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Chapters

1. The Importance and Applications of Variability

2. Algorithms for Constructing Approximations

3. Naive Approximations of Variability

4. Box-Splines: Uses, Constructions, and Applications

5. Stronger Approximations of Variability

6. An Error Bound for Piecewise Linear Interpolation

7. A Package for Monotone Quintic Spline Interpolation
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The Theory

The absolute error of a 
linear interpolant is tightly 
upper bounded by

29

the max change in 
slope of the function

times the distance to 
the nearest known 
point squared

plus the square root of 
the dimension times the 
max change in slope

times the longest edge 
length between points 
defining the linear 
interpolant squared

divided by how close 
the interpolated points 
are to being planar.
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The Importance

The approximation error of a linear (simplicial) interpolant tends 
quadratically towards zero when approaching observed data only 
when the diameter of the simplex is also reduced proportionally.


In practice, only linear convergence to the true function can be 
achieved (because the evaluation points don’t move).


Approximation error is largely determined by data spacing!


This theory only directly applies to Delaunay, but may give insight 
into the approximation behavior of other techniques.
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Piecewise Linear Approximations
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Multilayer Perceptron 
(regressor)

Delaunay 
(interpolant) 

 
simplicial mesh
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Approximating     ______________
In 2 dimensions, we get expected results. 

Delaunay is better at interpolation, MLP better at regression.
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Approximating     ______________
In 20 dimensions, the intuitive trend disappears!  

Delaunay and MLP look the same.
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Explaining the Convergence
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Two dimensions, d = 2
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Absolute error Nearest point, || z - x0 || 2
Smallest Singular Value, �d Longest edge, k
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Connecting Back to Theory
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Connecting Back to Theory
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the longest edge does 
not meaningfully shrink 
in 20 dimensions with 
thousands of points

the average closest 
point doesn’t get 
much closer and …


