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ABSTRACT

In making undergraduate admissions decisions, colleges and
universities must take a large amount of data into considera-
tion for each applicant. Surprisingly, there is almost no work
reported in the literature for a systematic, automated use of
the wealth of data gathered by an institution over the years;
such a system could guide admissions offices in targeting
applicants so that their yield (the applicants who enroll) is
maximized by effectively distributing resources (counselors’
time and energy) across applicants.

We discuss the use of supervised learning techniques,
namely perceptrons and support vector machines, in predict-
ing admission decisions and enrollment based on historical
applicant data. We show through experimental results that
a classifier, trained and validated on previous years’ data,
can identify with reasonable accuracy (1) those applicants
that the admissions office is likely to accept (based on his-
torical decisions made by the admissions office), and (2) of
the accepted applicants, those ones that are likely to enroll
at the institution. Additionally, the results from our feature
selection experiments can inform admissions offices of the
significance of applicant features relative to acceptance and
enrollment, thus aiding the office in future data collection
and decision making.

CCS Concepts

eComputing methodologies — Machine learning; Su-
pervised learning by classification; Feature selection;
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1. INTRODUCTION

Undergraduate admissions offices across the country read
thousands of applications every year trying to efficiently de-
termine which they should accept and reject. A “success”
for an admissions office is an instance of an applicant ac-
cepting an offer of admission. Admissions resources could
be optimally utilized if they could target these applicants.

Data from previous years can predict admissions decisions
for an upcoming year, and these predictions can be used to
aid admissions offices in making decisions that benefit their
institution’s mission. Surprisingly, there is very little litera-
ture on systematic uses of this data to help admissions coun-
selors make informed decisions; instead, admissions coun-
selors rely primarily on their experience and “gut feeling”.

In this paper, we discuss applying machine learning tech-
niques to help admissions counselors focus their efforts on
applicants who are more likely to enroll. We first describe,
in Section 2, the typical admissions process. Our literature
survey, in Section 3, shows the lack of research support-
ing the admissions process. Then, in Section 4, we discuss
our methodology to make predictions that guide admissions
counselors. Besides providing useful information on whether
an applicant should be pursued further, our results also re-
veal the need for better, more uniform coding mechanisms,
and suggest the relative importance of certain applicant fea-
tures over others. We present our results, and discuss their
implications in Section 5. We conclude in Section 6 with a
discussion on possible future directions for this work.

2. THE ADMISSIONS PROCESS

The admissions process typically follows these stages:
Stage 0 Applicants complete their applications.

Stage 1 Admissions counselors read the applications and
make an offer to certain applicants.

Stage 2 Some of these applicants accept their offer.



In Stage 0, applicants provide data on themselves. Some
of this data can be coded quantitatively (e.g., SAT scores,
High School grades, etc.), while other pieces are qualitative
(e.g., a personal essay, letters of recommendation, etc.). Ad-
missions counselors, based on their experience, code some of
the qualitative data in the applications.

According to The College Board, there are three main ap-
proaches to how the decision in Stage 1 is made: (1) based on
the institutional mission, (2) based on the institution’s defi-
nition of a “successful student” through the student’s tenure
at the institution, and (3) based on what characteristics the
institution would like to see in its incoming class [10]. Be-
sides the information from the application forms, there are
some other pieces of information that are taken into consid-
eration, e.g., a formal or informal interview with the appli-
cant, the number of times the applicant contacted his/her
admissions counselor, etc. Based on all of the above infor-
mation, the admissions office makes offers, typically accom-
panied by a scholarship package, to some of the applicants.

In Stage 2, students with offers decide whether or not to
enroll at the institution. The admissions office has very little
information, if any, about how students make their decisions.

Understandably, admissions offices strive to make the most
attractive offers to students who are most likely to enroll,
while maintaining desirable characteristics of the incoming
class and adhering to the institutional mission.

3. RELATED WORKS

The literature contains many studies which make predic-
tions about student retention at colleges and universities [3,
5]. These studies focus on defining which factors (socio-
demographic, academic, environment, etc.) contribute the
most to retaining students. However, little has been done
in making predictions about whether a given applicant will
gain admission to, and then enroll at an institution.

Waters and Miikkulainen [12] used machine learning to
predict graduate admissions in the computer science de-
partment at the University of Texas at Austin. They de-
veloped a statistical machine learning system that makes
admissions predictions based on historical admissions data.
Their predictions were restricted to whether the department
accepted applicants or not based on previous acceptance
data. They found that the features used most by their clas-
sifier (e.g., Undergraduate GPA, previous institutions, GRE
scores) were those used by human reviewers during the re-
view process.

Moore [8] worked on predicting decisions for graduate ad-
missions as well as success rates of those admitted. Moore
reports that the optimal algorithm used only academic and
professional information to determine whether a given appli-
cant may be accepted and/or succeed. This work did break
the predictions into two stages, however the second stage
involved predictions of success after a student had been ad-
mitted.

There is a middle stage (what we refer to as stage 2 in Sec-
tion 2) — whether a student accepted by an institution will
choose to attend the institution — which was not studied in
either of the two projects mentioned above. Little research
has been done in making predictions in this stage. There
is literature on the use of probability models of admission
and enrollment at a private, liberal arts college in an effort
to pursue quality improvement [2]. However, they analyzed
past admissions decisions and outcomes of those decisions

to determine whether the selection process of that selective
liberal arts college was in line with the college’s institutional
goals.

Our work goes one step beyond that which has been done
in the aforementioned research. We make the assumption
that the admissions office for the institution made past deci-
sions with the institutional mission in mind, and our models
use these past decisions to predict future decisions that the
admissions office may make (stage 1), as well as the outcome
of these decisions (stage 2).

4. METHODS

Admissions offices have a rich data set of information on
past applicants including previous decisions made in stage 1
and decisions made by the applicants in stage 2. Using this
data, we employ supervised machine learning techniques to
classify applicants for each of stages 1 and 2 in the hope that
the classifiers can assist admissions offices by improving their
ability to allocate resources.

We use data provided to us by a small private liberal arts
college. We use a standard Multi-Layer Perceptron (MLP)
with a sigmoid activation function and back-propagation as
well as a Single-Layer “Perceptron” with a linear activation
function to make predictions. We also present predictions
from a Support Vector Machine (SVM) implementation that
utilizes three different kernel mappings : linear, polynomial,
and RBF [6]. The implementations of the MLP and Per-
ceptron are our own and can be obtained by contacting any
of the authors, while the SVM’s can be obtained from the
publicly available Scikit-Learn package for Python3 [9].

There are three phases to our predictive modeling, they
are: data preprocessing in which we transform the raw data
set provided by the admissions office into a numerical form
accepted by each classifier, classification where we train each
classifier in an attempt to make useful predictions about fu-
ture applicants, and feature selection where we use a classi-
fier to attempt to identify which features in an application
are most influential in the stage 1 and 2 predictions.

4.1 Data Preprocessing

Certain variables in our data set, as shown in Table 1, are
created from the combination of other variables in the orig-
inal data set provided by admissions. In order to determine
the stage 1 target variable, we check whether the “acceptance
date” variable! is non-empty. However, a positive value in
the stage 2 target variable requires that the applicant made
a deposit and has not withdrawn from the institution before
beginning the first semester. Thus, an applicant is consid-
ered to be attending the institution if and only if the deposit
date is nonempty and the withdrawal date is empty.

The decile variable is created from the combination of a
normal decile ranking with an additional e-decile variable.?
According to the admissions office, the decile variable is a
more confident ranking of potential applicants, but a large
portion of the data for the column is missing. Thus, as
advised by the admissions office, we use the value from e-

!The date an institution accepts an applicant.

2The decile variable is provided by the applicant’s high-
school and represents class rank percentage truncated to the
nearest 10% interval. The e-decile is the decile value that
the institution estimates if the high-school does not provide
a ranking.



Table 1: Variables/types used in the data set.

Variable Data Type
Stage 1 Target Binary
Stage 2 Target Binary
Age Integer
Gender Binary
SAT Cumulative Integer
SAT Verbal Integer
SAT Math Integer
Recalculated GPA Float
Predicted GPA Float
Decile Float
Number of Visits Integer
Number of Interviews Integer
Number of institutional contacts Integer
EFC Integer
Has EFC Binary
AP Honors Integer
US Citizen Binary
TR-TP Float between 0 and 1
HSS-TP Float between 0 and 1
HST-TP Float between 0 and 1

decile whenever decile is missing, and if both are missing
then we use the value 0.

The variable “Has EFC” is derived from the EFC variable
(Expected Family Contribution) because of the numerous
missing entries in the EFC data. Some of the EFC entries
are blank, however many other entries for which their fam-
ily cannot contribute contain the value 0. Inserting O into
the EFC variable for all blank entries would cause the data
to no longer represent the difference between blank and 0
values, and thus the “Has EFC” variable is introduced to
help distinguish between missing data and 0 valued entries.
Those applicants missing the EFC column are given a value
of 0 in the “Has EFC” column.

The three target probability variables listed in the table
(TR-TP, HSS-TP, HST-TP) are created from the variables
“Territory” (TR), “High-School State” (HSS), and “High-
School Type” (HST). The territory variable contains coded
combinations of two or three letters denoting the region (as
determined by the admissions office) in which each applicant
resided. The HSS variable contains the abbreviation for the
state of the applicant’s high-school, and the HST variable
lists the type of high-school the applicant attended. In order
to transform these letter coded variables into numbers, we
calculate how often an applicant with a specific TR, HSS,
or HST value had a positive value in each of the stage 1 and
stage 2 targets for the training and validation data. Thus
we compute for each possible letter code in HSS the prob-
ability that an applicant with that letter code is accepted
by the institution, and the probability that applicant would
attend the institution given an offer of admission. The same
calculation is also performed for TR and HST. This pro-
cess yields the new numeric variables TR-TP, HSS-TP, and
HST-TP. Observe also that since these new target proba-

bility variables require knowledge of the target variable, the
TR-TP variable for stage 1 will be different from the TR-
TP for stage 2, and similarly for HSS-TP and HST-TP. In
order to transform these letter codes for the testing data
(current applicants), we use the probabilities obtained from
the training and validation data.

As mentioned, this data contains many missing entries.
In order to maximize our prediction performance, we auto-
matically generate “models” based on which features are not
present for a particular applicant. For subsets of applicants
that are large enough, we create a unique model for that
subset. Our definition of large enough is that a model must
contain at least 300 applicants. If a model does not contain
at least that many applicants we do not attempt to clas-
sify those applications. To demonstrate what we mean by
unique model, consider the following. A significant number
of applicants do not have SAT data, so we create two models
for each stage — one with all features present and one with
all features without SAT data. An applicant is placed into
a particular model based on which data features are missing
from her/his application.

The last step of our data preprocessing is to make all
of the columns of the data have a mean of zero and unit
variance. We do this in order to improve the rate at which
our classifiers converge on good predictions. Since we do
not know the mean and standard deviation of testing data
in practice, we record the mean and standard deviation for
each column of the training and validation data, and then
use those values to transform our testing data.

4.2 Classification

As stated previously, we use classifiers to predict two bi-
nary target variables (Stage 1 and Stage 2) relevant to the
admissions process. The first represents whether or not the
institution accepts an applicant, while the second represents
whether an accepted applicant attends the institution. For
the second stage we remove the data entries for all applicants
who are not accepted in the first stage, since only accepted
applicants can enroll in the institution.

For the purposes of predicting stage 1 and stage 2 results
during an application cycle, the classifiers are trained and
validated on the data from previous years and then tested
on the current year’s data. The values of the target variables
are known for training and validation, and hence our use of
supervised learning algorithms. Our data set comes from a
small institution, therefore we use four years of application
data (2010 - 2013) to train and validate the classifiers and
produce a “predicted” performance, while the 2014 data is
treated as current and we use it to test the “actual” perfor-
mance of each classifier. For our institution we know the
actual values of the target columns for 2014 (i.e., the deci-
sions made by the admissions office), but retain this setup in
order to simulate the effectiveness of our procedure as if it
were implemented during the 2014 application cycle. Thus,
our results have been compared to those of the human re-
viewers for the test year. We use a random selection of 80%
of the 2010-2013 data to train, and the remaining 20% to
validate each classifier and produce “predicted” performance
measures.

In order to identify which classifier will be “best” for pre-
dicting stages 1 and 2 in the current application cycle (2014),
we train and validate each of our classifiers on 1000 random-
ized 80-20 splits of the past data (2010 - 2013). For each of
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Figure 1: MCC values for varying numbers of fea-
tures.

our five classifiers, we select the trained classifier with the
highest performance ratings in the validation set for its type
and use that classifier for testing on the current data.

4.3 Feature Selection

Once we have found the best overall performing classifier
using the validation data, we use that classifier to do the
computationally expensive task of feature selection. For our
feature selection we use a variant of the simple (1,r) search
originally proposed by [11] — we use 2 forward steps and 1
backwards step. An overview of this feature selection algo-
rithm as well as a comparison of it with others can be found
in [4]. We chose to use the (l,r) search method because it
allows us to easily collect a sampling of performance for all
feature subsets.

In order to reduce the random noise experienced during
the evaluation of a feature subset, we execute 10 independent
trials of classification and use the average performance of
those trials as our indicator for the classifier’s performance
on a particular feature subset. Each trial involves training
and validation on a new randomized 80-20 split of the data.
These repeated trials allow the feature subsets to be chosen
with greater confidence in their performance.

Lastly, there is random variation in the selected features
from one execution of the (1,r) search to another. In order to
identify the most influential features with respect to our tar-
get variables, we collect the occurrence of each feature over
the number of possible feature sets in which it could have
potentially appeared. For each feature this gives a number
in the range 0 to 100 which represents the frequency of oc-
currence of that feature. Note that these percentages across
all features are not expected to add up to 100 because we are
combining the results of multiple different length subsets of
features into a single ranking. We compute the frequency of
each feature’s occurrence over 100 independent trial runs of
the (1,r) search as a measure of feature importance for each
model. We use 100 trials for two reasons: beyond 100 trials
the reduction in variance of results is not substantial, and
this computation is still feasible, requiring approximately 8
hours to run on 25 64-bit computers each utilizing 4-cores
at 3.10GHz.

S. RESULTS

We used the Matthews Correlation Coefficient (MCC) [7]
to rate the quality of our classifiers. Our variables are equally
weighted, and the data entries (individual applicants) are
independent, thus satisfying the independence and equiva-
lence assumptions required to use the MCC. Also, our data
set is unbalanced, and thus simple accuracy, specificity, and
sensitivity ratings can be misleading. We used the MCC in
our results because it acts as a combination of each of these
measures, works well for unbalanced data sets, and under
the independence and equivalence assumptions is a better
predictor of success than the other measures [1].

Table 3 displays the results of each classifier for each
model. The underlined entries are indepently the maxi-
mal “predicted” and “actual” metric values across each row.
The far left column provides general information about each
model including the sample size. Note that this table empha-
sizes the importance of using an appropriate metric to eval-
uate a classifier’s performance. There are multiple “100.0”
entries for some metrics, but we know that these are a result
of a trivial separation of the data.

It is difficult to classify the 2014 applicants in both Stage
1 and Stage 2 with classifiers trained on 2010-2013 appli-
cants. As we can see in Table 3, all of the models achieve
more than acceptable performance on the validation data,
but have widely varying performance on the testing data.
In the table we see that, according to the MCC, the MLP
was predicted to be the best classifier for every model ex-
cept stage 2 with all features. Contrary to predictions, the
MLP was never the best classifier in testing, according to
the MCC. The variation between predicted performance and
actual performance is smaller in Stage 1, which leads us to
believe that admissions counselors are relatively consistent
from year to year in making offers. On the other hand, it is
more difficult to confidently predict Stage 2 results, i.e., the
choice of an applicant to enroll at the institution or not.

It is also clear from Table 3 that having a high rating
for predicted classifier performance on the previous years’
data does not guarantee similar performance when using the
model for the next year. Regardless of the classifier, the re-
sults indicate that actual performance is likely to be less than
predicted performance. The usual suspect for such variation
in performance is that the classifiers overfit the training and
validation data. In our data set this problem may arise from
inconsistencies in the data collection between the 2010-2013
and 2014 academic years, but a more likely reason is the lack
of crucial information for stage 2, the scholarship package.
We discuss this further in Section 6. Thus, it is possible
that a more consistent and rigid encoding scheme for data
collection on admission applications would result in a reduc-
tion in overfitting as well as increased consistency between
predicted and actual performance.

This classification process does provide admissions offices
useful information. Note that sensitivity represents the true
positive rate of predictions, while specificity indicates the
true negative rate. Thus, whenever a model with high sensi-
tivity predicts that an applicant will attend the college, it is
more likely to be correct. The same holds true for a model
with high specificity and applicants not attending.

On average the best performing classifier we had at the
prediction stage was the MLP. We used the MLP for our
feature selection and the MCC metric to compare perfor-
mance as features were added or removed. Feature selection
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Figure 2: Feature ranking for each model sorted by sum of occurrence of each feature across all models.

Table 2: Five most important features per model.

SATc*
Has EFC
SATm®

Interviews
Has EFC
Visits

PGPA
Has EFC

Num Contacts

Stage 1 Stage 1 Stage 2 Stage 2

All features No SAT All features No SAT
PGPA3 PGPA Visits Visits
Num Contacts Num Contacts Interviews PGPA

Interviews
Has EFC

Num Contacts

often yields improved predictions, but we were equally inter-
ested in which features of the data had the greatest impact
on our predictions. As seen in Figure 1, the performance of
each of the classifiers plateaus after approximately 6-8 fea-
tures are added. This can be useful for our admissions office,
because it provides insight as to which features of an appli-
cation are most indicative of whether or not an applicant
will be accepted or enroll at the institution. Also note the
drop in performance when adding the last feature to each
of the models. It is not immediately clear why we witness
such a decrease in performance, but it is likely to be a side
effect of randomness and greedy selection in our variant of
the Forward Feature Selection algorithm.

Figure 2 shows the most important features as determined
by their frequency of occurrence during the (l,r) search. Ta-
ble 2 lists, in descending order, the best five features for
each model. In many ways the most important features in
Table 2 agree with the style of the institution from which our
data originates, a smaller institution where personal connec-
tions are held as most valuable. An Office of Admissions can
take these findings and use them to more efficiently utilize
resources in the next application cycle.

When an applicant is made an offer by the institution, it
is often accompanied by a scholarship package. According
to the admissions counselors, the scholarship package is an
important factor in the applicant’s decision making process
and thus is critical for stage 2 predictions. Our data set did
not include this information. It seems likely that including
this feature in a data set would improve the classifiers’ ability
to predict stage 2.

6. FUTURE WORK

This project used admissions data from a small institution
with approximately 2000 students. Four previous academic
years of data was collected to generate a large enough sam-
ple size to make confident predictions. However, a larger
institution of 10,000+ students could use just the previous
year’s admissions data. This may also reduce the effects of
the overfitting problem experienced by our classifiers.

This research could also be extended to any domain in
which a standard application process is followed, such as
jobs, scholarships, proposals, etc. Before attempting to im-
plement a similar prediction scheme to the one presented
here, it is very important that there exists a foundation of
data on previous applicants and the relevant targets.

Lastly, it would be possible to add a third stage where the
target variable indicates whether a student stayed beyond
the first year to predict retention as well. While research
has been done on predicting student retention, the incorpo-
ration of our stage 1 and 2 could be used to improve student
retention predictions. At the same time, student retention
predictions could inform stage 1 decisions for future years.

We would like to thank Dr. Brenda Poggendorf, Ms.
Melissa Lacombe, and Mr. Courtney Penn, of the Admis-
sions Office at Roanoke College, for providing us with the
data used in this project.



Table 3: Predicted/Actual results for each model and stage for each classifier.

MCC is a floating point

number between -1 and 1 while accuracy, sensitivity, specificity, and precision are all percentages.

7.
1]

8]

Model Statistics MLP Perceptron SVMT inear SVMPoly SVMRBF
Stage 1 MCC 0.8891/0.6424 0.8379/0.7811 0.8450/0.7942 0.8692/0.7105 0.8747/0.7300
All features Accuracy 97.03/85.92 95.63/93.77 95.88/94.56 96.35/90.62 96.56/93.39
Training/Validation N = 11783 Sensitivity 98.48/84.03 97.37/94.56 97.58/96.33 98.87/90.48 98.62/97.49
Testing N = 3146 Specificity | 89.47/96.45 86.51/89.35 86.83/84.76 84.35/91.44 86.40/70.56
Precision 97.99/99.25 97.42/98.02 97.53/97.24 96.78/98.33 97.28/94.86
Stage 1 MCC 0.8945/0.3942 0.7757/0.4501 0.8483/0.5868 0.8056/0.3684 0.8042/0.0000
All features Accuracy 98.24/74.73 95.73/82.50 96.98/91.17 97.49/78.08 97.24/92.69
No SAT data Sensitivity 99.72/72.91 99.15/81.77 99.43/91.46 100.00/77.50 99.73/100.00
Training/Validation N = 1986 | Specificity | 84.21/97.92 69.57/91.67 78.72/87.50 66.67/85.42 69.70/0.00
Testing N = 657 Precision 98.36/99.78 96.14/99.20 97.21/98.93 97.35/98.54 97.33/92.69
Stage 2 MCC 0.7275/0.2515 | 0.7321/0.4535 0.7138/0.4729 | 0.6750/0.0122 0.7227/0.0000
All Features Accuracy 91.34/41.24 92.20/69.78 91.49/71.84 90.88/16.69 92.10/83.39
Training/Validation N = 9869 Sensitivity 76.06/99.55 70.05/96.16 69.27/95.94 60.60/100.00 70.91/0.00
Testing N = 2627 Specificity | 95.23/29.63 97.38/64.52 96.86/67.04 97.82/0.09 96.84/100.00
Precision 80.26/21.98 86.18/35.06 84.18/36.70 86.43/16.62 83.39/100.00
Stage 2 MCC 0.8357/0.4607 0.8154/0.6653 0.8080,/0.5926 0.6996,/0.4849 0.7888/0.0000
All features Accuracy 95.56,/72.25 95.83/90.48 95.28/90.48 93.06/76.52 95.00/84.56
No SAT data Sensitivity | 78.69/94.68 86.67/78.72 74.55/52.13 68.63,/90.43 71.70/0.00
Training/Validation N = 1799 | Specificity 99.00/68.16 97.14/92.62 99.02/97.48 97.09/73.98 99.02/100.00
Testing N = 609 Precision 94.12/35.18 81.25/66.07 93.18/79.03 79.55/38.81 92.68/100.00
Overall MCC 0.8907/0.3356 0.8861/0.6714 0.8885/0.7121 0.8867/0.2071 0.8884/0.7820
Accuracy 94.57/66.87 94.32/83.40 94.45/85.34 94.36/60.39 94.44/88.80
Sensitivity | 94.36/84.32 93.71/92.32 94.05/94.41 93.87/89.51 94.01/84.16
Specificity 94.82/46.51 95.04/72.99 94.93/74.74 94.94/26.39 94.95/94.21
Precision 95.62/64.79 95.69/79.96 95.70/81.36 95.67/58.67 95.66/94.44
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