Convergence Rate Evaluation of
Derivative-Free Optimization Techniques

Thomas Lux

Roanoke College, Salem VA 24153, USA,
thlux@mail.roanoke.edu,
WWW home page: http://cs.roanoke.edu/ " thlux/

Abstract. This paper presents a convergence rate comparison of five
different derivative-free numerical optimization techniques across a set of
50 benchmark objective functions. Results suggest that Adaptive Mem-
ory Programming for constrained Global Optimization, and a variant of
Simulated Annealing are two of the fastest-converging numerical opti-
mization techniques in this set. Lastly, there is a mechanism for expand-
ing the set of optimization algorithms provided.
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1 Introduction

Many well defined engineering problems in the real world do not allow for the
timely computation of an optimal solution. The task of Optimization is to find
desirable solutions to problems in spaces that prohibit exhaustive search. In
order to find desirable solutions while only sampling a relatively small subset of
possible solutions, optimization algorithms make assumptions about the search
space for the problem at hand. The goal of an optimization algorithm can vary,
but for the purpose of this paper we consider algorithms attempting to find
“good” solutions with the fewest computations possible.

The problems that optimization algorithms solve are often formulated as a
function which takes a set of parameters as input and then returns the perfor-
mance of that set of parameters as output. We define an objective function as
a deterministic function of multiple real-valued parameters from R™ to R. The
computational cost of exhaustively searching for a minimum return value of one
of these objective functions grows exponentially with respect to the number of
input parameters and their acceptable values.

The class of objective functions that we focus on are those for which each pa-
rameter is bounded, and no derivative information is known about the objective
function. In mathematical terms we define this as: given derivative-free objective
function f :R™ — R minimize f(x) subject to a; < z; < b;, (a;,b; € R).

In this paper we analyze five different numerical optimization techniques,
four of which are relatively new, and compare their rates of convergence on a
set of well-understood objective functions with varying dimensionality. The pur-
pose of this study is to propose a ranking of these algorithms in terms of their



likelihood to converge to an optimal solution in a restricted number of objective
function evaluations. The five different numerical optimization techniques that
we compare, in order of their creation, are: Simulated Annealing (SA)[1], Adap-
tive Memory Programming for constrained Global Optimization (AMPGO)[2],
Cuckoo Search (CK)[3], Backtracking Search optimization Algorithm (BSA)[4],
and quick Artificial Bee Colony (qABC)[5]. In Section 3 we list the objective
functions, their bounds, the metrics for convergence evaluation, and the gen-
eral formulation of each optimization algorithm. In Section 4 we provide figures
and tables demonstrating the performance of each algorithm across our set of
objective functions.

1.1 Metaheuristic Optimization Algorithms

Metaheuristic algorithms are useful for searching through objective function
spaces for which there is no known derivative because they rely strictly on the
objective values obtained and the internal heuristics of the algorithm. In [6] the
general form of a metaheuristic optimization algorithm and the behavior of a
random walk is defined. It is also mentioned that the mechanisms by which op-
timization algorithms achieve this random walk behavior is quite different. All
of the numerical optimization algorithms that we analyze in this paper, with the
exception of AMPGO, are metaheuristic algorithms. Each of the metaheuristic
algorithms can be generalized to a random walk search model while AMPGO
utilizes a memoized approximation of the objective function gradient for conver-
gence.

2 Related Works

Numerical optimization is currently a rapidly expanding field of research. Every
year there are more numerical optimization techniques and algorithms intro-
duced and the five being compared in this paper provide only a small subset
of all algorithms. This paper focuses specifically on derivative-free optimization
techniques because they are useful for optimizing complex objective functions
[7,8]. These five derivative-free algorithms are only a few of large existing set
and have been selected because they each have independent assertions claiming
them to be the “best” optimization algorithms by various sources within recent
years [3-5] [9, 10].

Due to the sheer quantity of optimization research papers being published,
even the most thorough review papers [6] [11] do not compare all algorithms.
Many optimization algorithms that have been proposed and asserted as compar-
atively better than others are compared strictly to older less powerful algorithms.
Compounding this difficulty, much of the source code is written in languages for
proprietary software such as Matlab and is not readily usable by the public. For
these reasons, more research comparing modern numerical optimization algo-
rithms as well as providing open sourced implementations of the algorithms in
a freely available language needs to be done.



3 Methods

The 50 objective functions chosen for this evaluation are a sampling of functions
used on other optimization algorithms as well as in some popular benchmark
data sets. The function definitions can be found in the Appendix Table 1, while
the number of dimensions used in testing and acceptable ranges for values are all
listed in the Appendix Table 2. Plots of a representative subset of these functions
in their two dimensional variants are seen in Figure 1.

In order to compare the relative performance of the different optimization
algorithms across multiple objective functions, we use Data Profiles, rank 0 prob-
ability, and best solution probability. The remaining statistics that are normally
included in a comparative study of optimization algorithms (maximum, mini-
mum, average, and standard deviation of objective function values obtained) are
available through electronic supplementary materials.

The parameters we use for each of the optimization algorithms are the default
suggested values provided by the authors of the algorithms. The one exception
to this is the simulated annealing algorithm, for which we use an acceptance
probability of 0, and add a modification that increases the temperature each
time a better solution is discovered. For exact parameters and implementation
details, please see the referenced source code. Each optimization algorithm is
allowed 5000 executions of each objective function. 5000 is selected under the
assumption that these optimization algorithms would be used in the future on
moderately difficult-to-compute objective functions which require at least 10
seconds to evaluate per iteration under 12-24 hour time constraints.

We use a convergence in mean stopping criteria over the objective function
value obtained by an optimization algorithm after 5000 executions to determine
an appropriate number of repeated trials. By using convergence in mean, we
attempt to equally weight the results in terms of randomness. We consider the
final objective function value obtained by an optimization algorithm to have
converged in mean after (¢ > 500) trials if: for 100 sequential trials, the mean of
the cumulative final objective function values shifts by less than 0.01%, in terms
of the range of mean values encountered. For this set of objective functions
and optimization algorithms the average number of trials needed to pass this
convergence test was 1106.

Data Profile The Performance Profile, introduced by Dolan in [12], compares
the performance ratio of multiple optimization algorithms given a stopping crite-
ria such as a time restriction or maximum number of executions of the objective
function. Performance Profiles can be used to compare optimization algorithms
with the only drawback being the need for a singular stopping criteria. Data Pro-
files, created by Moré in [7], address the need for establishing a singular stopping
criteria by measuring the convergence of an optimization algorithm after succes-
sive executions of the objective function. The primary measurement performed
in a Data Profile is at each execution of the objective function. Supposing an
optimization algorithm has executed an objective function f, for n iterations,
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Fig. 1. The 2 dimensional variants of some of the objective functions, provided as a
sampling of the types of spaces used in testing. These plots were generated by the code

freely available at [9].



starting with initial solution xg, where the best solution obtained by any opti-
mization algorithm in the comparison set at the n'* execution of the objective
function is fr,, the performance of that optimization algorithm can be measured
by the percentage of solutions that pass the following criteria:

f(wo) = f(x) = (1 = 7)(f(x0) — fL) (1)

7 > 0 is the convergence tolerance, and represents how close an optimization
algorithm should be after n executions of the objective function to f; given a
specific fo. We provide plots for each 7 € {1071,1073,1075,107"}.

Rank 0 Probability It is often desirable to rank optimization algorithms in
terms of their performance. This becomes difficult when the algorithms incorpo-
rate randomness, but given some number of independent repeated trials we can
still use simple counting techniques to calculate the probability that a selected
algorithm will be ranked in a certain position. Particularly the position of inter-
est for comparative studies is often that of the best algorithm, which we refer to
as rank 0. Consider the following explanation.

Given some set of optimization algorithms A and an optimization algorithm
of interest 5 € A, consider objective function f where each optimization algo-
rithm has been allowed n executions of f. At the n** execution, 8 along with
each other algorithm in A, has some set of objective function values obtained
from repeated trials Tz, where n(T3) is the number of repeated trials. Now, as-
suming that the values in T are independent and hence equally likely, we can
count the number of ways that a trial value from T3 could be the smallest of
trial values selected for each algorithm. This counts the number of ways that S
could be the best algorithm in A after n executions of the objective function.
Using a simple counting technique, we have that the rank 0 probability Ry of 3,
can be computed as:

1 Z HaGA\{ﬁ} n({i € Ty s.t. v < i})

(2)
Ty [Haeay iy (7o)

Note that the entire computation of rank 0 probability can be done in alog(a)
with @ = ngye(T,) ' for each execution of the objective function. This is not
prohibitive with any reasonable number of trials.

Best Solution Probability It could also be interesting to know which opti-
mization algorithms achieved the best solutions and how often each algorithm
was the one to achieve the best solution in the benchmark objective function
set. We consider an algorithm to have achieved the best possible solution if it is
within 1% of the best objective function value obtained by any other algorithm

! The computation of n({i € T s.t. v < i}) in the upper product sum can be done in
log(n(T.)) if each Ty is sorted. mquvg represents the average number of trials for all
acA



after the same number of executions of the objective function. For objective
function f, the 1% distance, fi¢ is defined from the range maxy — minys, where
max ¢ is the maximum value of f that any optimization algorithm achieved and
miny is the minimum. The best solution probability bsp of optimization algo-
rithm « after n executions of each objective function f, in the set of benchmark
objective functions F', is:

nla) = n({f € F s.t. min(T,) — ming, < fin})
bsp(a) i Q

where T, is the set of trials for a after n executions of f and ming,, is the
minimum value achieved for f after n iterations by any optimization algorithm.
For verification and reuse, the code for each of these algorithms is available
at the following web address implemented in python3 with Numpy and SciPy:
https://github.com/thluz/Convergence_Rate_Evaluation.
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4 Results

The four different tolerance values for data profiles display important nuances
related to this set of optimization algorithms. As can be seen in Figure 2, Anneal-
ing converges at least weakly more often than any other optimization algorithm,
qABC is close behind. As we shift from weak convergence (7 = 10~!) toward
stronger convergence (7 = 1077), the results transition to show that AMPGO is
the optimization algorithm most capable of converging quickly. It is clear from
the four different tolerance values that Annealing and AMPGO are the two
contenders for fastest converging optimization algorithms. Annealing converges
more consistently, but not as quickly as AMPGO.
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Fig. 3. The average rank 0 probability across all 50 objective functions

The rank 0 probability results in Figure 3 also suggest that Annealing and
AMPGO are close competitors. For the first 20 executions of the objective func-
tion, the random sampling provided by the populations of qABC, BSA, and
Cuckoo Search allow for the fastest convergence. Beyond 20 and until 500 exe-
cutions of the objective function, it is unclear which of Annealing or AMPGO
is a better choice. Given more than 500 executions of the objective function,
Annealing is the algorithm most likely to find the best solutions in this set of
objective functions. Notably, Annealing only beats AMPGO by a factor of 50%,
and would only be more than likely to produce the best solution with more than
two trials.
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across all 50 objective functions

Lastly, the best solution probability results in Figure 4 suggest that given a
large number of repeated trials, all of the algorithms are more than 50% likely
to find the equivalent of a “best” solution. Once again, Annealing and AMPGO
are the highest performing algorithms for the first 500 executions. The high
performance of Annealing in this plot suggests that Annealing does a better job
of performing global search though the objective function solution spaces given
many trials.

The purpose of this study is to compare the expected convergence rates
of each of these algorithms for optimizing complex objective functions. These
results suggest that given a mostly unknown complex objective function with
bounds and time constraints on optimization, where it is expected that the
unknown objective function resembles at least one of the functions in this test
set, modified Annealing or AMPGO are most likely to produce optimal results
with the fewest executions of the objective function.

5 Future Work

This paper presents a comparison of the convergence rates of five different
derivative-free optimization algorithms on a set of 50 objective functions. The
goal of this work is to provide insight as to which optimization algorithm will



produce the best results on real-world problems. There are many potential di-
rections this study could take with that goal in mind.

It is necessary to continue introducing new derivative-free optimization al-
gorithms to this test set. In order to encourage the global comparison of new
optimization algorithms, the source code for all of this research is readily avail-
able in Python. Any new algorithm can be introduced to this comparison by
porting existing code to a python function header with an example provided.

This study could be repeated with real-world complex optimization problems
to see if the projected results hold under the noise of different objective functions.
Finally, the modified Annealing algorithm used in this paper may be improved
by the techniques introduced in [13].

6 Conclusion

Comparative study suggests that AMPGO and modified Simulated Annealing
converge more reliably on objective functions in our set than do qABC, BSA and
Cuckoo search. More optimization algorithms need to be incorporated into this
form of comparison in order to expand the search for the fastest-converging
general optimization algorithms for bounded derivative-free optimization on
difficult-to-compute objective functions.

Appendix

Table 1. These are the mathematical formulations of the functions used to compare
the optimization algorithms. For the definitions of the Needle Eye, Penalty02, Rana,
and Zero Sum functions please see code provided in electronic supplementary materials.

Name Definition
Ackley 200702V % S # _ od Dl cos(2men) |90 4 ¢
Adjiman cos(z1) sin(z2) — (wgi_lﬂ)
Alpine Sy o sin (@;) + 0.1z
Beale (z122 — 21 + 1.5)2 + (mlmg —xz1 + 2.25)2 + (mlmg -z + 2.625)2
Bohachevsky Z;:ll [xf + 2x%+1 — 0.3 cos(3mx;) — 0.4 cos(dmzit1) + 0.7]
Cosine Mixture —0.1377 1 cos(5mz;) — 3004 xf
Deceptive - [% > 1 9i (%)]ﬂ
Deflected
Corrugated 017", [(x.b — a)? — cos (Kx /> (s — a)2>]
Spring
Drop Wave ,w
240537  «?
a
Easom a*ﬁJre*eE:C: ;"le?,d: i cos (cz;)
e n




Egg Holder —x1 sin («/ |1 — z2 — 47\) — (2 +47) sin (\/%1‘1 + x0 + 47|>
Exponential 05X =7
Giunta 0.6+ 7, [sin2 (1 - %xl) - 5—10 sin (4 — %:pi) — sin (1 — %:pl)}
Goldstein [1 + (1 +x2 + 1)2(19 — 14z + Bx% — 14z + 6122 + 3:1:%)] +
Price [30 + (221 — 3w2)2(18 — 32z1 + 1222 + 4832 — 36172 + 2723)]
Griewank ﬁ > x? — I cos (%) +1
Katsuura ;L;Ol [1 +(i+1) Zizl L(2k$i)J27k]
5 cicos{n[(w1—a;)?+(wa—b;)]}
Langermann =i (21—a.)%+ (29 —b,)2
e b
Levy sin?(my1) + 305 (i — D2[1+ 10sin? (7yip1)] + (yn — 1)
)
Michalewicz — Z?:I sin (;) sin?™ (%)

Miele Cantrell

(e7®1 — x2)* + 100(z2 — x3)° + tant(z3 — z4) + 2§

Mishra01 (1 + zp)*n Tn =1 — Z7_L:—11 (Iq‘,+§z‘+1>
. 112
Mishra02 [4 S fol = ([T fol) ]

Multi Modal

_206_0'2\/% Ty _ oI cos(2may) +204¢

Odd Square e e cos(md) (1 + %)
Pathological ?;11 Si;zgl/(j:(ff:sij?o;(gs
Penalty01 15 {10 sin?(my1) + Z?;léz?::i();fll(-; ig;’lzj (myiv1)] + (yn — 1)2} +
Qing i1 (@f —9)?
Quintic Sory |of — 3ad + 4ad + 202 — 10z, — 4
Rastrigin 10n+ 37 ; [#2 — 10 cos(2mz;)]
Ripple 2 _e—2log 2( Tigg)? [sin® (5mz;) + 0.1 cos? (5007 ;)]
Rosenbrock 2oM100(2? — 2i41)? + (2 — 1))
Paviani >0 [log2 (10 — ;) + log? (x; — 2)] — (]‘[jgl 1%0)0'2
Plateau 30+ >0 L)
Salomon 1 — cos (27‘(\/2?:1 :cf) + 0.1\/2?:1 z?
Sargan Sihan <xf +043770, ziz;
Schwefel01 418.9829n — S°0 , x; sin(y/]z;])
Schwefel02 iy |zl + TTisy |l
Shubert < 5_ icos[(i+ 1)z1 + 2]) <Z?:1 icos[(i + 1)z + 2])

Sine Envelope

sin2(\/z?+1+z?70.5)
(0.001(z7, | +a7)+1)2

-t +0.5

Six Hump
Camel 43:% + x120 — 4x§ — 2.1:3‘11 + 4w§ + %m?
Trigonometric 14357, 8sin? [7(x; — 0.9)2] + 6sin? [14(x; — 0.9)2] + (z; — 0.9)2

Ursem Waves

—0.922 + (22 — 4.523)z122 4 4.7 cos [2z1 — 22(2 + x1)] sin(2.5mw1)




Vincent — >, sin(101log(x))
22
Wavy - % > cos(kxzi)e” 2
Weierstrass . Zﬁgg”‘ a¥ cos (2mb* (z; + 0.5)) — n Zﬁgg‘” ak COS(ka)]
a2 (e 22
Whitley p oy |GG AT cos(100(22 — @) + (1 - 25)2) + 1

Table 2. Objective functions used for evaluating the five optimization algorithms.

Name Dimensions| Bounds Name Dimensions| Bounds
Adjiman 2 [-1,2 Beale 2 [-4.5, 4.5]
[=1,1]y
Egg Holder 2 [-512, 512] G‘ﬁ‘jit:m 2 -2, 2]
Langermann 2 [ 0,10] Shubert 2 [-10,10]
Six Hump [-0.9,1.2],
Camel 2 [-5, 5] Ursem Waves 2 ~1.2,1.9],
Drop Wave 4 [-5.12, 5.12] Whitley 4 [-10.24, 10.24]
Miele Cantrell 4 [-1, 1] Weierstrass 4 [-0.5, 0.5]
Rastrigin 4 [-5.12,5.12] Katsuura 4 [ 0,10]
Salomon 4 [-100, 100] Deceptive 8 [0,1]
Giunta 8 [-1, 1] Griewank 8 [-600, 600]
Trigonometric 8 [-500, 500] Paviani 8 [2.001,9.999]
Sargan 8 [-100, 100] Zero Sum 8 [-10, 10]
Plateau 16 [-5.12, 5.12] Michalewicz 16 [0,7]
Mishrall 16 [-10, 10] 0Odd Square 16 [-5%pi, 5*pi]
Qing 16 [-500, 500] Rosenbrock 16 [-5,10]
Alpine01 16 [-10, 10] Bohachevsky 24 [-15, 15]
Easom 24 [-100,100] Levy03 24 [-10, 10]
Multi Modal 24 [-32, 32] Penalty02 24 [-50, 50]
Quintic 24 [-10, 10] Vincent 24 [0.25,10]
Ackley 48 [-32,32] Cosine Mixture 48 -1, 1]
Wavy 48 [-pi, pi] Pathological 48 [-100, 100]
Deflected
Schwefel22 48 [-100, 100] Corrugated 96 [0,2*alphal
Spring
Mishra02 96 [0,1 + 1e-9] Penalty01 96 [-50, 50]
Exponential 96 [-1, 1] Ripple01 96 [0,1]
Schwefel 96 [-512,512] Sine Envelope 96 [-100, 100]
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