
Nonparametric Distribution Models for Predicting and
Managing Computational Performance Variability*

Thomas C. H. Lux1, Layne T. Watson2, Tyler H. Chang1, Jon Bernard1, Bo Li1, Xiaodong Yu1,
Li Xu3, Godmar Back2, Ali R. Butt2, Kirk W. Cameron2, Yili Hong4, Danfeng Yao2

Abstract— Performance variability can have a significant
impact on many applications of computing. Cloud computing,
high performance computing, and computer security commu-
nities each exert considerable effort managing and analyzing
variability throughout the system stack. This work presents and
evaluates a methodology for predicting precise characteristics of
the computational performance variability of an input/output
(I/O) application over varying system configurations. Results
demonstrate that the presented methodology is capable of
precisely modeling performance variability, which could allow
applications that tighten service level agreements, maximize
computational throughput, and obfuscate system configurations
against malicious users.

I. INTRODUCTION

Computational variability presents itself in a variety of
forms. Processes that are apparently identical in a cloud com-
puting or high performance computing (HPC) environment
may take different amounts of time to complete the same
job. This variability can cause unintentional violations of
service level agreements in cloud computing applications or
indicate suboptimal performance in HPC applications. The
sources of variability, however, are distributed throughout the
system stack and often difficult to identify. The methodology
presented in this work is applicable to modeling the expected
variability of useful computer system performance measures
without any prior knowledge of system architecture. Some
examples of interesting performance measures that could be
modeled with the techniques in this work include computa-
tional throughput, power consumption, processor idle time,
number of context switches, and RAM usage, as well as any
other ordinal measure of performance.

Predicting performance variability in a computer system
is a challenging problem that has primarily been attempted
in one of two ways: (1) build a statistical model of the
performance data collected by running experiments on the
system at select settings, or (2) run artificial experiments
using a simplified simulation of the target system to estimate
architecture and application bottlenecks. In this paper, the
proposed modeling techniques rest in the first category and

*This work was supported by the National Science Foundation Grant
CNS-1565314.

1Doctoral student, Department of Computer Science, Virginia Poly-
technic Institute and State University, Blacksburg, Virginia 24060, USA
(tchlux at vt.edu)

2Department of Computer Science, Virginia Polytechnic Institute and
State University, Blacksburg, Virginia 24060, USA

3Doctoral student, Department of Statistics, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24060, USA

4Department of Statistics, Virginia Polytechnic Institute and State Uni-
versity, Blacksburg, Virginia 24060, USA

represent a notable increase in the ability to model precise
characteristics of variability.

Many previous works attempting to model system per-
formance have used simulated environments [1], [2], [3].
Grobelny et al. refer to statistical models as being over-
simplified and not capable of capturing the true complexity
of the underlying system. Historically, statistical models
have been limited to modelling at most one or two system
parameters and have therefore not been capable of modeling
the complexity of the underlying system. [4], [5], [6], [7].
These limited statistical models have provided satisfactory
performance in narrow application settings. However these
techniques require additional code annotations, hardware
abstractions, or additional assumptions about the behavior
of the application in order to generate models. In contrast,
the approach presented here requires no modifications of the
application, no architectural abstractions, nor any structural
descriptions of the input data being modeled. The techniques
used in this work only require performance data as input.

Most existing work on performance variability has focused
on operating system (OS) induced variability [8], [9]. Yet,
system I/O variability has been particularly difficult for
statistical models to capture [5]. The prior work attempting
to model I/O variability has been similarly limited to one or
two system parameters [10].

This paper presents and evaluates an application of multi-
variate interpolation to the domain of computer system I/O
throughput. The interpolatory models are used to predict
the cumulative distribution functions of the expected I/O
throughput for a system at previously unseen configurations.
Beyond this I/O case study, the techniques in this paper
can tractably model tens of interacting system parameters
with tens of thousands of known configurations. The primary
contribution of this work is a modeling framework using
multivariate interpolation to capture precise characteristics
(via cumulative distribution functions) of an arbitrary per-
formance measure on any type of computer system.

Section II details the mathematical techniques used to
approximate variability, the chosen measurement of error,
and an optimization strategy for improving model perfor-
mance. Section III summarizes the data collection process
as well as provides summary statistics of the data used for
the case study. Section IV presents the results of the I/O case
study including analyses of approximation accuracy, model
convergence, and system parameter importance. Section V
discusses possible explanations for witnessed results, poten-
tial applications of the predictive methodology, and future

improvements of the models.

II. VARIABILITY MODELING

Performance and its variability can be summarized by a
variety of statistics. Mean, range, standard deviation, vari-
ance, and interquartile range are a few summary statistics
that describe performance and variability. However, the most
precise characterization of any performance measure is the
cumulative distribution function (CDF), or its derivative the
probability density function (PDF). Previous techniques for
predicting system performance have strictly modeled real-
valued summary statistics because there exists a large base of
mathematical techniques capable of approximating functions
of the form f : Rd → R. However, there is little systems
work approximating functions f : Rd → {g | g : R→ R}.

A major hurdle when modeling functions such as the CDF
or PDF is that certain properties must be maintained. It
is necessary that a PDF f : R → R have the properties
f(x) ≥ 0 and

∫∞
−∞ f(x)dx = 1. However, for a CDF

F : R → R the properties are F (x) ∈ [0, 1] and F (x)
is right continuous and nondecreasing. For the purpose of
function approximation, the properties of the CDF are more
straightforward to maintain. This work utilizes the fact that
a convex combination of CDFs results in a valid CDF.
Given G(x) =

∑
i wiFi(x),

∑
i wi = 1, wi ≥ 0, and

each Fi is a valid CDF, G must also be a valid CDF.
A demonstration of how this is applied can be seen in
Figure 1. Next, the three techniques used to model CDFs are
summarized, a mechanism for identifying important features
is proposed, and the error metric used throughout this work
is presented. For each of the following, n ∈ N refers to the
number of training samples (known system configurations),
d ∈ N refers to the dimension of the data (ordinal system
parameters), x(i) ∈ Rd is a known system configuration
with known performance CDF Fx(i) , and y ∈ Rd refers to
a previously unseen system configuration with performance
CDF Fy .

A. Delaunay

The Delaunay triangulation is a well-studied geometric
technique for producing an interpolant [11]. The Delaunay
triangulation of a set of data points into simplices is such
that there are no data points inside the sphere defined by
the vertices of each simplex. For a d-simplex S with vertices
x(0), x(1), . . ., x(d), and functions Fx(i) , i = 0, . . ., d, y ∈ S
is a unique convex combination of the vertices,

y =

d∑
i=0

wix
(i),

d∑
i=0

wi = 1, wi ≥ 0, i = 0, . . . , d,

and the Delaunay interpolant Fy at y is given by

Fy =

d∑
i=0

wiFx(i) .

The computational complexity of Delaunay interpolation
(for the implementation used) is O(nd4 log d), which is

���×��� ���×��� ���×��� ���×��� ���×��� ���×��� ���×���

���

���

���

���

���

I/O Throughput

C
D

F
V

al
ue

Fig. 1. In this example, the general methodology for predicting a CDF
and evaluating error can be seen. The Delaunay method chose three source
system configurations (dotted lines) and assigned weights {.3, .4, .3} (top to
bottom). The weighted sum of the three known CDFs produces the predicted
CDF (dashed line). The KS Statistic (red arrow) computed between the true
CDF (solid line) and predicted CDF (dashed line) is 0.2 for this example.
The KS test null hypothesis is rejected by p-value 0.01, however it is not
rejected by p-value 0.001.

capable of scaling reasonably to d ≤ 50. In the present
application, a Delaunay simplex S containing y is found,
then the d+1 vertices (system configurations) of S are used
to assign weights to each vertex and produce the predicted
CDF for system configuration y.

B. Max Box Mesh

The Max Box mesh is an interpolation technique that
utilizes overlapping box splines [12] as basis functions that
are shifted and scaled to have support over box shaped
regions. The boxes are constructed such that each box has
exactly one point in its interior while maintaining the largest
minimum distance between the interior point and the closest
face of the box (a measure of centrality). Given a set of
box splines

{
bx

(i)}
with the max box properties anchored at

interior points
{
x(i)
}

,

Fy =

∑
i b

x(i)

(y)Fx(i)∑
i b

x(i)(y)
.

Note that the box splines always satisfy bx
(i)

(y) ≥ 0. The
computational complexity of interpolation via the Max Box
mesh is O(n2d).

C. Voronoi Mesh

A well-studied technique for classification and approxima-
tion is the nearest neighbor algorithm [13]. Nearest neighbor
inherently utilizes the convex region Cx(i)

(Voronoi cell
[14]) consisting of all points closer to x(i) than any other
point x(j). The Voronoi mesh smooths the nearest neighbor
approximation by utilizing the Voronoi cells to define support
via a generic basis function v : Rd → R+ given by

vx
(i)

(y) =

(
1− ||y − x(i)||2

2 d(y − x(i) | x(i))

)
+

,

where d(w | x(i)) is the distance between x(i) and the
boundary of the Voronoi cell Cx(i)

in the direction w.
vx

(i)(
x(j)

)
= 0 and vx

(i)

has local support, giving the
interpolated value

Fy =

∑
i v

x(i)

(y)Fx(i)∑
i v

x(i)(y)
,

where 0 ≤ vx
(i)

(y) ≤ 1. The computational complexity
of interpolation via the Voronoi mesh is O(n2d). All of
the approximations are an interpolant involving a convex
combination of known functions Fx(i) .

D. Feature Weighting

It is well-known that an important procedure in any
application of predictive methodologies is identifying those
features of the data that are most relevant to making accurate
predictions [15]. Selection strategies such as the floating
searches studied in [16] or others compared in [17] can be
too expensive for large approximation problems. Rather, this
work poses feature selection as a continuous optimization
problem. Let X be an n × d matrix of n known system
configurations with d parameters each normalized to be
in [0, 1]. Define an error function that computes the error
of a predictive model trained on X diag w, w ∈ Rd, by
performing ten random splits with 80% of the rows of
X diag w for training and 20% for testing. A minimum of
this error function could be considered an optimal weighting
of the features of X . Minimization is performed using a
zero order method in the absence of a readily computable
gradient.

E. Measuring Error

The performance of approximation techniques that predict
functions can be analyzed through a variety of summary
statistics. Mean error, mean absolute error, mean squared
error, and the max absolute error are all popular measures.
This work uses the max absolute error, also known as the
Kolmogorov-Smirnov (KS) statistic [18] for its compatibility
with the KS test.

The two-sample KS test is a useful nonparametric test
for comparing two CDFs while only assuming stationarity,
finite mean, and finite variance. The null hypothesis (that
two CDFs come from the same underlying distribution) is
rejected at level p ∈ [0, 1] when

KS >

√
−1

2
ln

(
p

2

)√
1

n1
+

1

n2
,

with distribution sample sizes n1, n2 ∈ N . For all applica-
tions of the KS test presented in this work n1 = n2 = 150.
An example of the round-trip prediction methodology from
known and predicted distributions to the calculation of error
can be seen in Figure 1.

System Parameter Values
File Size (KB) 4, 16, 64, 256, 1024, 4096, 8192, 16384

Record Size (KB) 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4096, 8192, 16384

Thread Count 1, 8, 16, 24, 32, 40, 48, 56, 64
Frequency (GHz) 1.2, 1.6, 2, 2.3, 2.8, 3.2, 3.5

Test Type Readers, Rereaders, Random Readers,
Initial Writers, Rewriters, Random Writers

TABLE I
A DESCRIPTION OF SYSTEM PARAMETERS CONSIDERED FOR IOZONE.

RECORD SIZE MUST BE ≤ FILE SIZE DURING EXECUTION.

� ���×��� ���×��� ���×���
�

������

������

������

������

���������� ������ ����������

Fig. 2. Histogram of the raw throughput values recorded during all IOzone
tests across all system configurations. The distribution is skewed right, with
few tests having significantly higher throughput than most others.

III. DATA
This paper presents a variability modeling case study with

a five-dimensional dataset produced by executing the IOzone
benchmark [19] on a homogeneous cluster of computers.
Each node contains two Intel Xeon E5-2637 CPUs offering a
total of 16 CPU cores with 16GB of DRAM. While the CPU
frequency varies depending on the test configuration, the
I/O from IOzone is performed by an ext4 filesystem sitting
above an Intel SSDSC2BA20 SSD drive. At the time of data
collection, Linux kernel Version 4.13.0 was used. The system
performance data was collected over two weeks by executing
IOzone 150 times for each of a select set of approximately
18K system configurations, for a total of approximately 2.7M
executions of IOzone. A single IOzone execution reports the
max I/O throughput in kilobytes per second seen for the
selected test type. The summary of the data components in
x(i) for the experiments for this paper can be seen in Table
I. Distributions of raw throughput values being modeled can
be seen in Figure 2.

Some mild preprocessing was necessary to prepare the
data for modeling and analysis. All features were shifted by
their minimum value and scaled by their range, mapping each
feature independently into [0, 1]. This normalization ensures
each feature is treated equally by the interpolation techniques
and should be performed on all data before building models
and making predictions regardless of application. All 150
repeated trials for a system configuration were grouped with
that configuration. The only nonordinal feature in this data
is the test type. All test types were treated as different
applications and were separated for modeling and analysis,
i.e., predictions for the “readers” test type were made using
only known configurations for the “readers” test type.

IV. RESULTS
All three interpolation techniques are used to predict the

distribution of I/O throughput values at previously unseen

��� ��� ��� ��� ���
�

���

���

���

���
��������

��� ��� ��� ��� ���
�

���

���

���

���
����������

��� ��� ��� ��� ���
�

���

���

���

���
�����������

KS Statistic for Predicted vs. Actual

C
ou

nt
of

Pr
ed

ic
tio

ns
w

ith
G

iv
en

K
S

St
at

is
tic

Fig. 3. Histograms of the prediction error for each modeling algorithm from
ten random splits when trained with 80% of the data aggregated over all
different test types. The distributions show the KS statistics for the predicted
throughput distribution versus the actual throughput distribution. The four
vertical red lines represent commonly used p-values {0.05, 0.01, 0.001,
1.0e-6} respectively. All predictions to the right of a red line represent
CDF predictions that are significantly different (by respective p-value) from
the actual distribution according to the KS test.

system configurations. In order to improve robustness of the
error analysis, ten random selections of 80% of the IOzone
data are used to train each model and the remaining 20%
provide approximation error for each model. The recorded
errors are grouped by unique system configuration and then
averaged within each group. The samples are identical for
each interpolation technique, ensuring consistency in the
training and testing sets.

The aggregation of errors across all IOzone tests given
80% of the data as training can be seen in Figure 3.
Agglomerate errors for each technique resemble a Gamma
distribution. The percentages of significant prediction errors
with varying p-values are on display in Table II. The primary
p-value used for analyses in this work is 0.001, chosen
because close to 2K predictions are made for each test type.
Also, applications executed in cloud and HPC systems that
could benefit from statistical modeling will be executed at
least thousands of times. In line with this knowledge, it is
important to ensure that only a small fraction of interpretable
results could occur solely under the influence of random
chance. When considering the p = 0.001 results for each
technique, a little under half of the predicted CDFs are signif-
icantly different from the measured (and presumed) correct
CDFs. A rejection rate of 45% would seem a poor result,
however in this situation the complexity of the problem

Algorithm P -Value % N.H. Rejections
Delaunay

Max Box Mesh
Voronoi Mesh

.05
58.4
69.3
61.9

Delaunay
Max Box Mesh
Voronoi Mesh

.01
51.1
58.4
53.4

Delaunay
Max Box Mesh
Voronoi Mesh

.001
44.1
46.9
45.1

Delaunay
Max Box Mesh
Voronoi Mesh

1.0e-6
31.4
26.6
28.7

TABLE II
PERCENT OF NULL HYPOTHESIS REJECTIONS RATE BY THE KS-TEST

WHEN PROVIDED DIFFERENT SELECTIONS OF p-VALUES. THESE

ACCOMPANY THE PERCENT OF NULL HYPOTHESIS REJECTION RESULTS

FROM FIGURE 3.

warrants a slightly different interpretation. These predictions
are a very precise characterization of performance variability,
in fact the cumulative distribution function of a random vari-
able is the strongest possible characterization of variability
that can be predicted. Globally, only a little under half of
the predictions fail to capture all of the characteristics of
performance variability at new system configurations. It is
also demonstrated later in this Section that this result can
likely be improved.

While interpreting null hypothesis rejection rates for these
interpolation techniques, it is important to consider how the
rejection rate reduces with increasing amounts of training
data. Figure 4 displays the change in p = 0.001 null hypoth-
esis rejection rate with increasing density of training data
up to the maximum density allowed by this set. Delaunay
interpolation provides the best results with the least training
data by about 5%, but these low density rejection rates are
unacceptably high (90%). Figure 4 clearly shows that this
data set and/or the system variables used in the models
of performance variability is inadequate to capture the full
variability map from system parameters to performance CDF.
Which or both obtains is not clear. A few well chosen data
points can significantly improve the interpolants, and thus a
careful study of the rejection instances is warranted, besides
enlarging the set of system variables being modeled.

It may be misleading to consider the global performance
of each prediction technique across all test types, as some test
types are more difficult than others to predict and have more
apparent latent variables. In Figure 5, the relative difficulty
of each IOzone test type can be compared. The I/O test
types analyzing reads are typically approximated with lower
error than those test types analyzing writes. Regardless of
test type, in the aggregate results the KS statistics hover
consistently around 0.15, demonstrating an impressively low
KS statistic for predictions. In order to address the opacity
of aggregate analysis, another case study and an application
of the methodology from Section II-D is presented in Table
III.

The results presented in Table III are achieved by per-
mitting each approximation technique 300 iterations of sim-

��������

����������

�����������

�� �� �� ��

��

��

��

��

���

Percentage of Training Data

%
N

ul
l

H
yp

ot
he

si
s

R
ej

ec
tio

ns

Fig. 4. The performance of each algorithm on the KS test (p = 0.001) with
increasing amounts of training data averaged over all IOzone test types and
ten random splits of the data. The training percentages range from 5% to
95% in increments of 5%. Delaunay is the best performer until 95% of data
is used for training, at which Max Box mesh becomes the best performer
by a fraction of a percent.

ulated annealing. In each iteration, the impact of potential
weights on the average KS statistic were considered. All
weights were kept in the range [0,2], and were applied to
the normalized features for frequency, file size, record size,
and number of threads. All three approximation techniques
had similar optimal weights achieved by simulated annealing
of approximately (.001, 2, 1.7, 1.5) for frequency, file size,
record size, and number of threads, respectively. Recall that
each interpolation technique uses small distances to denote
large influences on predictions, meaning that frequency was
the most important feature when predicting variability for
the “readers” test type, followed not-so-closely by number
of threads, then record size.

The “readers” test type results demonstrate that the under-
lying prediction techniques work and are capable of seeing
rejection rates below 5% when tuned for a given applica-
tion. It is important to emphasize that the roughly 95% of
predictions for which the null hypothesis was not rejected are
predicting the precise distribution of I/O throughput that will
be witnessed at a previously unseen system configuration. To
the authors’ knowledge, there is no existing methodology that
is generically applicable to any system performance measure,
agnostic of system architecture, and capable of making such
powerful predictions.

V. DISCUSSION

The results of the IOzone case study indicate that predict-
ing the CDF of I/O throughput at previously unseen system
configurations is a challenging problem. The KS statistic
captures the worst part of any prediction and hence provides
a conservatively large estimate of approximation error. The
average absolute errors in the predicted CDFs are always
lower than the KS statistics. However, the KS statistic was
chosen because of the important statistical theory surround-
ing it as an error measure. Considering this circumstance,

Algorithm P -Value Unweighted
% N.H. Rejection

Weighted
% N.H. Rejection

Delaunay
Max Box Mesh
Voronoi Mesh

.05
24.9
21.3
18.7

30.2
21.2
11.3

Delaunay
Max Box Mesh
Voronoi Mesh

.01
21.6
16.4
14.9

27.4
16.4
7.0

Delaunay
Max Box Mesh
Voronoi Mesh

.001
19.7
13.1
12.3

25.4
13.1
4.6

Delaunay
Max Box Mesh
Voronoi Mesh

1.0e-6
17.9
11.3
8.5

23.4
11.3
2.3

TABLE III
THE NULL HYPOTHESIS REJECTION RATES FOR VARIOUS p-VALUES

WITH THE KS-TEST. THESE RESULTS ARE STRICTLY FOR THE

“READERS” IOZONE TEST TYPE AND SHOW UNWEIGHTED RESULTS AS

WELL AS THE RESULTS WITH WEIGHTS TUNED FOR MINIMUM ERROR

(KS STATISTIC) BY 300 ITERATIONS OF SIMULATED ANNEALING.
NOTICE THAT THE WEIGHTS IDENTIFIED FOR THE DELAUNAY MODEL

CAUSE DATA DEPENDENT TUNING, REDUCING PERFORMANCE.
MAXBOXMESH PERFORMANCE IS IMPROVED BY A NEGLIGIBLE

AMOUNT. VORONOIMESH PERFORMANCE IS NOTABLY IMPROVED.

a nonnegligible volume of predictions provide impressively
low levels of error. Powerful predictive tools such as those
presented in this work allow for more in-depth analysis of
system performance variability. For example, system con-
figurations that are most difficult to predict in these tests
are likely “outlier” configurations that do not resemble those
configurations that share many similar parameters. Analysis
of these configurations may provide valuable insight into
effective application specific operation of computer systems.

As mentioned in Section I, no prior work has attempted to
model an arbitrary performance measure for a system to such
a high degree of precision. All previous statistical modeling
attempts capture a few (< 3) ordinal performance measures.
Generating models that have such high degrees of accu-
racy allows system engineers to identify previously unused
configurations that present desired characteristics. Service
level agreements (SLAs) in cloud computing environments
are cause for capital competition that is affected heavily
by system performance [20]. Users prefer SLAs that allow
the most computing power per monetary unit, incentivizing
service providers to guarantee the greatest possible perfor-
mance. Overscheduling and irregular usage patterns force
cloud service providers to occasionally overload machines,
in which case precise models of system performance can be
used to statistically minimize the probability of SLA viola-
tion. Similar targeted performance tuning techniques can be
applied to HPC system configuration to maximize application
throughput or minimize system power consumption.

A final application domain affected by this methodology is
computer security. Collocated users on cloud systems have
received attention recently [21]. If a malicious collocated
user is capable of achieving specific insight into the con-
figuration of the system, or the activity of other collocated
users by executing performance evaluation programs (i.e.,

�������� ���������� �����������

� �� �� �� ��

��

��

��

��

���
�������_�������

� �� �� �� ��

��

��

��

��

���
������_�������

� �� �� �� ��

��

��

��

��

���
������_�������

� �� �� �� ��

��

��

��

��

���
�������

� �� �� �� ��

��

��

��

��

���
��-�������

� �� �� �� ��

��

��

��

��

���
���������

Percentage of Training Data

%
N

ul
l

H
yp

ot
he

si
s

R
ej

ec
tio

ns

Fig. 5. The percentage of null hypothesis rejections for predictions made
by each algorithm on the KS test (p = 0.001) over different IOzone test
types with increasing amounts of training data. Each percentage of null
hypothesis rejections is an average over ten random splits of the data. The
training percentages range from 5% to 95% in increments of 5%. The read
test types tend to allow lower rejection rates than the write test types.

IOzone), a new attack vector may present itself. Malicious
users could be capable of identifying common performance
distributions of vulnerable system configurations and vul-
nerable active user jobs. This knowledge may allow targeted
exploits to be executed. Light inspection of raw IOzone I/O
throughputs provides substantial evidence that distinct per-
formance distributions coincide closely with specific system
configuration parameters. Conversely, a service provider may
defend against such attacks by deliberately obfuscating the
performance of the machine. Models such as those presented
in this paper could identify optimal staggering and time-delay
whose introduction into the system would prevent malicious
users from identifying system configurations and active jobs.

Results presented in Table III are particularly interesting,
demonstrating that Delaunay appears most vulnerable to data
dependent tuning, Max Box mesh is largely insensitive to
such tuning, and Voronoi mesh benefits (for this data set)
from the tuning.

There are many avenues for extending this modeling
methodology. One extension is to add categorical variables to
the models. Presently the rejection rate of distribution predic-
tions can only be reduced with large volumes of performance
data, however the judicious choice (via experimental design,
e.g.) of new data points may be able to effectively reduce the
amount of training data required. Finally, more case studies
need to be done to test the robustness of the present modeling
techniques to changes in domain and performance measure.

VI. CONCLUSION

The methodology presented is capable of providing new
insights, extending existing analyses, and improving the
management of computational performance variability. De-
launay, Max Box mesh, and Voronoi mesh interpolation
are viable techniques for constructing approximations of
performance cumulative distribution functions. A case study
on I/O throughput demonstrated that the models are capable
of effectively predicting CDFs for most unseen system
configurations for any of the available I/O test types. The
present methodology represents a notable increase in the
ability to statistically model arbitrary system performance
measures involving the interaction of many ordinal system
parameters.

REFERENCES

[1] E. Grobelny, D. Bueno, I. Troxel, A. D. George, and J. S. Vetter, “Fase:
A framework for scalable performance prediction of hpc systems and
applications,” Simulation, vol. 83, no. 10, pp. 721–745, 2007.

[2] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “A simulation
approach to evaluating design decisions in mapreduce setups,” in
IEEE International Symposium on Modeling, Analysis & Simulation
of Computer and Telecommunication Systems (MASCOTS’09). IEEE,
2009, pp. 1–11.

[3] G. Wang, A. Khasymski, K. R. Krish, and A. R. Butt, “Towards
improving mapreduce task scheduling using online simulation based
predictions,” in International Conference on Parallel and Distributed
Systems (ICPADS), 2013. IEEE, 2013, pp. 299–306.

[4] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and
A. Purkayastha, “A framework for performance modeling and pre-
diction,” in Supercomputing, ACM/IEEE Conference. IEEE, 2002,
pp. 21–21.

[5] D. H. Bailey and A. Snavely, “Performance modeling: Understanding
the past and predicting the future,” in European Conference on Parallel
Processing. Springer, 2005, pp. 185–195.

[6] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin,
and J. C. Sancho, “Using performance modeling to design large-scale
systems,” Computer, vol. 42, no. 11, 2009.

[7] K. Ye, X. Jiang, S. Chen, D. Huang, and B. Wang, “Analyzing and
modeling the performance in xen-based virtual cluster environment,” in
12th IEEE International Conference on High Performance Computing
and Communications (HPCC). IEEE, 2010, pp. 273–280.

[8] P. Beckman, K. Iskra, K. Yoshii, S. Coghlan, and A. Nataraj, “Bench-
marking the effects of operating system interference on extreme-scale
parallel machines,” Cluster Computing, vol. 11, no. 1, pp. 3–16, 2008.

[9] P. De, R. Kothari, and V. Mann, “Identifying sources of operating
system jitter through fine-grained kernel instrumentation,” in IEEE
International Conference on Cluster Computing. IEEE, 2007, pp.
331–340.

[10] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf, “Managing variability in the io performance
of petascale storage systems,” in International Conference on High
Performance Computing, Networking, Storage and Analysis (SC),
2010. IEEE, 2010, pp. 1–12.

[11] D.-T. Lee and B. J. Schachter, “Two algorithms for constructing a
delaunay triangulation,” International Journal of Computer & Infor-
mation Sciences, vol. 9, no. 3, pp. 219–242, 1980.

[12] C. De Boor, K. Höllig, and S. Riemenschneider, Box Splines. Springer
Science & Business Media, 2013, vol. 98.

[13] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[14] G. L. Dirichlet, “Über die reduction der positiven quadratischen
formen mit drei unbestimmten ganzen zahlen.” Journal für die Reine
und Angewandte Mathematik, vol. 40, pp. 209–227, 1850.

[15] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, no. Mar,
pp. 1157–1182, 2003.

[16] P. Pudil, J. Novovičová, and J. Kittler, “Floating search methods in
feature selection,” Pattern Recognition Letters, vol. 15, no. 11, pp.
1119–1125, 1994.

[17] F. Ferri, P. Pudil, M. Hatef, and J. Kittler, “Comparative study of
techniques for large-scale feature selection,” Pattern Recognition in
Practice IV, vol. 1994, pp. 403–413, 1994.

[18] H. W. Lilliefors, “On the kolmogorov-smirnov test for normality with
mean and variance unknown,” Journal of the American Statistical
Association, vol. 62, no. 318, pp. 399–402, 1967.

[19] W. D. Norcott. (2017) Iozone filesystem benchmark. [Online].
Available: http://www.iozone.org

[20] P. Patel, A. H. Ranabahu, and A. P. Sheth, “Service level agreement in
cloud computing,” Wright State University CORE Scholar Repository,
2009.

[21] M. Ali, S. U. Khan, and A. V. Vasilakos, “Security in cloud computing:
Opportunities and challenges,” Information Sciences, vol. 305, pp.
357–383, 2015.

