
AN ALGORITHM FOR CONSTRUCTING MONOTONE
QUINTIC INTERPOLATING SPLINES

Thomas C. H. Lux
Layne T. Watson
Tyler H. Chang

Departments of Computer Science, Mathematics,
and Aerospace and Ocean Engineering

Virginia Polytechnic Institute & State University
2000 Torgersen Hall, Blacksburg, VA, USA

{tchlux,ltw,thchang}@vt.edu

Li Xu
Yueyao Wang

Yili Hong

Department of Statistics
Virginia Polytechnic Institute & State University

213 Hutcheson Hall, Blacksburg, VA, USA
{lix1992,yueyao94,yilihong}@vt.edu

SpringSim’20, May 19-May 21, 2020, Fairfax, VA, USA; c⃝2020 Society for Modeling & Simulation International (SCS)

ABSTRACT

An algorithm for computing monotone order six piecewise polynomial interpolants is proposed. Algebraic
constraints for enforcing monotonicity are provided that align with quintic monotonicity theory. The algo-
rithm is implemented, tested, and applied to several sample problems to demonstrate the improved accuracy
of monotone quintic spline interpolants compared to that for existing monotone cubic spline interpolants.

Keywords: monotone, quintic spline, Hermite interpolation, sixth order polynomial.

1 INTRODUCTION AND MOTIVATION

Many domains of science rely on smooth approximations to real-valued functions over a closed interval.
Piecewise polynomial functions (splines) provide the smooth approximations for animation in graphics
(Herman and Oftedal 2015, Quint 2003), aesthetic structural support in architecture (Brennan 2019), ef-
ficient aerodynamic surfaces in automotive and aerospace engineering (Brennan 2019), prolonged effective
operation of electric motors (Berglund et al. 2009), and accurate nonparametric approximations in statistics
(Knott 2012). While polynomial interpolants or regressors apply broadly, splines are often a good choice
because they can approximate globally complex functions while minimizing the local complexity of an
approximation.

It is often the case that the true underlying function or phenomenon being modeled has known properties
e.g., convexity, positivity, various levels of continuity, or monotonicity. Given a reasonable amount of data,
it quickly becomes difficult to achieve desirable properties in a single polynomial function. In general,
the maintenance of function properties through interpolation/regression is referred to as shape preserving
(Fritsch and Carlson 1980, Gregory 1985). The specific shapes this work will achieve in approximations
are monotonicity and C2 continuity. These properties are chiefly important to the approximation of cumu-
lative distribution functions and subsequently the effective generation of random numbers from a specified
distribution.

In statistics especially, the construction of a monotone interpolating spline that is C2 continuous is mean-
ingfully useful (Ramsay et al. 1988). A function with these properties could approximate a cumulative

Lux, Watson, Chang, Xu, Wang, and Hong

0 0.5 1
0

0.5

1

0 0.5 1 0 0.5 1

(1) to (0) (½, 4) to (½, 4) (1,-7,100) to (0,-7,-100)

Figure 1: Example polynomials that interpolate function values at the ends of the interval [0,1]. The first
only interpolates the function values g2(0) = 1 and g2(1) = 0, making it the order two polynomial g2(x) =
1− x. For the second plot g4(x) = 8x3 − 12x2 + 4x+ 1/2, which is order four and interpolates the values
g4(0) = 1/2, g′4(0) = 4, g4(1) = 1/2, g′4(1) = 4. Finally the third plot shows the order six polynomial
g6(x) = −64x5 + 160x4 − 140x3 + 50x2 − 7x+ 1 interpolating the function values g6(0) = 1, g′6(0) = −7,
g′′6(0) = 100, g6(1) = 0, g′6(1) = −7, g′′6(1) = −100. Notice that interpolating the same fixed number of
function values at each endpoint will always result in an even order interpolating polynomial.

distribution function to a high level of accuracy with relatively few intervals. A twice continuously dif-
ferentiable approximation to a cumulative distribution function (CDF) would also produce a corresponding
probability density function (PDF) that is continuously differentiable, which is a property many standard
parametric distributions maintain.

The currently available software for monotone piecewise polynomial interpolation includes quadratic (He
and Shi 1998), cubic (Fritsch and Carlson 1980), and (with limited application) quartic (Wang and Tan 2004,
Piah and Unsworth 2011, Yao and Nelson 2018) cases. In addition, a statistical method for bootstrapping the
construction of an arbitrarily smooth monotone fit exists (Leitenstorfer and Tutz 2006), but the method does
not take advantage of known analytic properties related to quintic polynomials. Theory has been provided
for the quintic case (Ulrich and Watson 1994, Hess and Schmidt 1994), however this theory has not yet been
used to construct a monotone quintic spline interpolation routine. Recent work suggests that the lack of
quintic software may be due to a general unawareness of the theory (Xie et al. 2018).

The importance of piecewise quintic interpolation over lower order approximations can be simply demon-
strated. In general, the order of a polynomial determines the number of function values it can interpolate,
and the growth rate of error away from the interpolated function values. As demonstrated in Figure 1, it can
be seen that matching a value at either end of the interval requires an order two (linear) approximation and
each additional derivative at the ends of the interval raises the necessary polynomial order by two. The body
of this work is composed of a novel algorithm for enforcing monotonicity on quintic polynomial pieces,
then extending that solution to work on quintic splines.

The major contribution of this work is an algorithm for constructing monotone quintic interpolating splines
that utilizes existing quintic monotonicity theory. The remainder of this paper is structured as follows:
Section 1.1 summarizes the existing monotone cubic spline interpolation methodology, Section 2 presents
an algorithm for constructing monotone quintic spline interpolants, Section 3 offers experiments and results
with cubic and quintic methods, Sections 4 and 5 discuss results and conclude.

1.1 Computing a Monotone Cubic Interpolant

The current state-of-the-art monotone interpolating spline with a mathematical software implementation
is piecewise cubic, continuously differentiable, and was first proposed in (Fritsch and Carlson 1980) then

Lux, Watson, Chang, Xu, Wang, and Hong

0 1 2 3 4

0

1

2

3

4

α

β

4

3

2

1

Figure 2: These are the feasible regions of monotonicity for cubic splines and the projections that make a
cubic polynomial piece monotone. The regions themselves are numbered 1–4 corresponding to their original
description in Fritsch and Carlson (1980). One point is projected onto each region as a demonstration.

expanded upon in (Carlson and Fritsch 1985). Let π : x0 = k1 < k2 < · · · < kn = x1 be a partition of the
interval [x0,x1]. Let f : R→ R be C2, and

{
f (ki)

}n
i=1 and

{
∆i
}n

i=1 be given sets of function and derivative
values at the partition points for a monotone function f . Either f (ki)≤ f (ki+1), i = 1, . . ., n−1, and ∆i ≥ 0,
i = 1, . . ., n, or f (ki) ≥ f (ki+1), i = 1, . . ., n− 1, and ∆i ≤ 0, i = 1, . . ., n. Let f̂ be a piecewise cubic
polynomial defined in each subinterval Ii = [ki,ki+1] by

hi = ki+1 − ki, u(t) = 3t2 −2t3, p(t) = t3 − t2,

f̂ (x) = f (ki)u
(
(ki+1 − x)/hi

)
+ f (ki+1)u

(
(x− ki)/hi

)
−hi∆i p

(
(ki+1 − x)/hi

)
+hi∆i+1 p

(
(x− ki)/hi

)
.

Notice that a trivially monotone spline results when ∆i = 0, for i = 1, . . ., n. However, such a spline
has too many wiggles for most applications. Carlson and Fritsch (1985) show that simple conditions on the
derivative values can guarantee monotonicity, and that these conditions can be enforced in a way that ensures
modifications on one interval will not break the monotonicity of cubic polynomials over any neighboring
intervals. Consider the terms α =

(
∆i(ki+1 − ki)

)
/
(

f (ki+1)− f (ki)
)

and β =
(
∆i+1(ki+1 − ki)

)
/
(

f (ki+1)−
f (ki)

)
. If f (ki) = f (ki+1), take ∆i = ∆i+1 = 0 and α = β = 1. Monotonicity of a cubic polynomial over a

subinterval can be maintained by ensuring that α and β reside in any of the regions depicted in Figure 2.

The actual region of monotonicity for a cubic polynomial is larger, but projection of (α,β) into one of these
regions ensures that monotonicity will be achieved and not violated for neighboring regions. The user must
decide which region is most appropriate for the projections based on the application, Fritsch and Carlson
recommend using Region 2.

While the cubic monotonicity case affords such a concise solution, the region of monotonicity is not so
simple in the quintic case. In the next section, an algorithm for performing a projection similar to those for
cubic polynomials is proposed.

Lux, Watson, Chang, Xu, Wang, and Hong

2 MONOTONE QUINTIC INTERPOLATION

The following section is composed of three algorithms that together are used to construct a monotone quintic
spline interpolant. Without loss of generality, the algorithms will only consider the monotone increasing
(nondecreasing) case. The monotone decreasing (nonincreasing) case is handled similarly. Algorithm 1
checks monotonicity, Algorithm 2 enforces monotonicity on an order six polynomial piece of the quintic
spline, and Algorithm 3 uses the previous two algorithms to enforce monotonicity for the entire quintic
spline.

In pseudocode, a function binary_search(g, a, b) is used, where a,b ∈ S ⊂Rp for convex S, g : S →
{FALSE, TRUE} is a right continuous Boolean function, g(b) = TRUE, and for µ ∈ [0,1], g

(
(1− µ)a+

µb
)
= TRUE =⇒ g

(
(1− ν)a+ νb

)
= TRUE for µ ≤ ν ≤ 1. The search returns

(
(1− c)a+ cb

)
for the

smallest c ∈ [0,1] such that g
(
(1− c)a+ cb

)
= TRUE.

These algorithms make use of first and second derivatives of the approximated function. In the case that
the first and second derivative information is not provided along with function values, the derivatives are
estimated with finite differences of the function values. The final quintic spline is represented as a piece-
wise polynomial using the Newton form for each polynomial piece, and ultimately converted to a B-spline
representation for evaluation.

Algorithm 1: is_monotone
(
x0,x1, f

)
where x0, x1 ∈ R, x0 < x1, and f is an order six polynomial defined by f (x0), D f (x0), D2 f (x0), f (x1),
D f (x1), D2 f (x1). Returns TRUE if f is monotone increasing on [x0,x1].

1: if
(

f (x0) = f (x1)
)
and not

(
0 = D f (x0) = D f (x1) = D2 f (x0) = D2 f (x1)

)
return FALSE

end if
2: if

(
D f (x0)< 0 or D f (x1)< 0

)
return FALSE

end if

The necessity of these first two steps follows directly from the fact that f is C2. The next case
is in accordance with a simplified condition for quintic monotonicity that reduces to one of cubic
positivity studied in Schmidt and Heß (1988), where α , β , γ , and δ are defined in terms of values
and derivatives of f at x0 and x1. Step 5 checks for the necessary condition that α ≥ 0, Step 6 checks
β ≥ α , and Step 7 checks γ ≥ δ , all from Schmidt and Heß (1988). If all necessary conditions are
met, then the order six piece is monotone and Step 8 concludes this check.

3: if
(
D f (x0) = 0 or D f (x1) = 0

)
4: w := x0 − x1

v := f (x0)− f (x1)
5: if

(
D2 f (x1)>−4D f (x1)/w

)
return FALSE

6: if
(
D2 f (x1)< (3wD2 f (x0)−24D f (x0)−32D f (x1)+60v/w)/(5w)

)
return FALSE

7: if
(
D2 f (x0)< 3D f (x0)/w

)
return FALSE

8: return TRUE
end if

The following code considers the remaining case where D f (x0) ̸= 0 and D f (x1) ̸= 0.

9: A := D f (x0)
x1 − x0

f (x1)− f (x0)

B := D f (x1)
x1 − x0

f (x1)− f (x0)

Lux, Watson, Chang, Xu, Wang, and Hong

The variables A and B correspond directly to the theoretical foundation for positive quartic polyno-
mials established in Ulrich and Watson (1994), first defined after Equation (18).

10: γ0 := 4
D f (x0)

D f (x1)
(B/A)3/4

γ1 :=
x1 − x0

D f (x1)
(B/A)3/4

α0 := 4(B/A)1/4

α1 :=− x1 − x0

D f (x1)
(B/A)1/4

β0 := 30−
12
(
D f (x0)+D f (x1)

)
(x1 − x0)(

f (x1)− f (x0)
)√

A
√

B

β1 :=
−3(x1 − x0)

2

2
(

f (x1)− f (x0)
)√

A
√

B
The γ , α , and β terms with subscripts 0 and 1 are algebraic reductions of the simplified conditions
for satisfying Theorem 2 in Equation (16) of Ulrich and Watson (1994). These terms with subscripts
0 and 1 make the computation of α , β , and γ functions of the second derivative terms, as seen in
Step 11 below.

11: γ := γ0 + γ1D2 f (x0)
α := α0 +α1D2 f (x1)
β := β0 +β1

(
D2 f (x0)−D2 f (x1)

)
12: if (β ≤ 6) return

(
α >−(β +2)/2

)
else return

(
γ >−2

√
β −2

)
end if

The reason for structuring the α , β , and γ computations in terms of the second derivative of f (seen in
Step 11 of Algorithm 1) will become more apparent later. The next problem to consider is that of making a
nonmonotone order six polynomial piece into a monotone one by modifying its first and second derivative
values at the ends of an interval. Note that the actual value of the function at the ends of the interval is not
modified, as the resulting polynomial needs to interpolate.

Algorithm 2: make_monotone
(
x0,x1, f

)
where x0, x1 ∈ R, x0 < x1, and f is an order six polynomial defined by f (x0), D f (x0), D2 f (x0), f (x1),
D f (x1), D2 f (x1). Returns f monotone on [x0,x1].

1: if
(

f (x1) = f (x0)
)

D f (x0) := D f (x1) := D2 f (x0) := D2 f (x1) := 0
return

end if

2: D f (x0) := median

(
0, D f (x0), 14

f (x1)− f (x0)

x1 − x0

)
D f (x1) := median

(
0, D f (x1), 14

f (x1)− f (x0)

x1 − x0

)
The selection of values in Step 2 for D f (x0) and D f (x1) is suggested by Ulrich and Watson (1994)
and also by Huynh (1993). These rules quickly enforce upper and lower bounds on derivative values
to ensure quintic monotonicity is obtainable.

Lux, Watson, Chang, Xu, Wang, and Hong

The next case that will be covered is in accordance with a simplified condition for quintic mono-
tonicity that reduces to one of cubic positivity studied in Schmidt and Heß (1988), where α , β , γ ,
and δ are defined in terms of values and derivatives of f at x0 and x1. Steps 5 and 6 ensure that the
following bounds on D2 f (x0) are compatible while Step 7 ensures that the conditions on D2 f (x1)
are compatible. To conclude the simplified case, Step 8 first enforces γ ≥ δ , then Steps 9 and 10
enforce α ≥ 0 and β ≥ α respectively. Combined, these three conditions derived from Equation
(2.18) in Schmidt and Heß (1988) guarantee monotonicity of this polynomial piece.

3: if
(
D f (x0) = 0 or D f (x1) = 0

)
4: w := x0 − x1

v := f (x0)− f (x1)
5: if

(
5D f (x0)+4D f (x1)> 20v/w)

6: D f (x0) := D f (x0) max

(
0,

20v
w
(
5D f (x0)+4D f (x1)

))
D f (x1) := D f (x1) max

(
0,

20v
w
(
5D f (x0)+4D f (x1)

))
end if

7: D2 f (x0) := min

(
D2 f (x0),

4(2D f (x0)+D f (x1))+20v/w
w

)
8: D2 f (x0) := max

(
D2 f (x0),3D f (x0)/w

)
9: D2 f (x1) := min

(
D2 f (x1),−4D f (x1)/w

)
10: D2 f (x1) := max

(
D2 f (x1),

3wD2 f (x0)−24D f (x0)−32D f (x1)+60v/w
5w

)
return

end if

The following code considers the case where D f (x0) ̸= 0 and D f (x1) ̸= 0.

11: A := D f (x0)
x1 − x0

f (x1)− f (x0)

B := D f (x1)
x1 − x0

f (x1)− f (x0)
12: if

(
max(A,B)> 6

)
D f (x0) := 6D f (x0)

/
max(A,B)

D f (x1) := 6D f (x1)
/
max(A,B)

end if

This ensures that (A,B) remains within a viable region of monotonicity (satisfying Theorem 4, seen
in Fig. 6 of Ulrich and Watson (1994)).

13: η :=
(
D2 f (x0),D2 f (x1)

)
η0 :=

(
−
√

A
4
(
7
√

A+3
√

B
)
,

√
B

4
(
3
√

A+7
√

B
))

14:
(
D2 f (x0), D2 f (x1)

)
:= binary_search

(
g,η ,η0

)
Here g(z) = is_monotone(x0,x1, f) where x0, x1, f (x0), f (x1), D f (x0), D f (x1) are fixed, and
the variable z =

(
D2 f (x0),D2 f (x1)

)
. This binary search identifies feasible values of D2 f (x0) and

D2 f (x1) that are nearest to the current values η . This search is valid because η0 is guaranteed to
produce a monotone function, which can be seen in Equation (23) of Ulrich and Watson (1994).
return

Lux, Watson, Chang, Xu, Wang, and Hong

Notice that both Algorithms 1 and 2 have O(1) runtime assuming a fixed level of relative precision. A
constant number of operations are needed for verifying monotonicity (Algorithm 1), while a constant set of
operations and a single binary search are performed for enforcing monotonicity (Algorithm 2). The search
requires a fixed number of steps to achieve any predetermined relative precision. Also note that an efficient
implementation of Algorithm 2 only needs to recalculate Steps 11 and 12 of Algorithm 1 during the binary
search. Next, an algorithm for constructing a monotone quintic spline interpolant is presented.

Algorithm 3: monotone_spline
(
(k1, . . ., kn), f, s

)
where (k1, . . ., kn) is an increasing sequence of real numbers, f is an order six piecewise polynomial with
breakpoints k1, . . ., kn defined by the data

{
f (ki)

}n
i=1,

{
D f (ki)

}n
i=1,

{
D2 f (ki)

}n
i=1, and s > 1 is an integer

shrink factor.

1: create queue
create changed(1, . . ., n) := FALSE
create step_size(1, . . ., n) :=

(
D f (k1)/s, . . ., D f (kn)/s

)
The three variables defined in Step 1 are used to ensure the eventual achievement of monotonicity.
The queue is a standard first in first out (FIFO) queue with enqueue and dequeue operations.
The array changed contains Booleans describing whether or not a breakpoint belongs to an inter-
val that has been modified to enforce monotonicity. The step_size array contains the real-valued
derivative decrement step sizes to use in the search for a valid monotone spline.

2: for i := 1, . . ., n−1
enqueue

(
(ki,ki+1)

)
Initially, all intervals must be checked for monotonicity. The following loop will continue until all
intervals are verified as monotone without need for modification.

3: while (size(queue)> 0)
4: (x j, x j+1) := dequeue
5: if

(
not is_monotone(x j, x j+1, f)

)
6: if

(
changed(j)

)
D f (x j) := D f (x j)−step_size(j)

if
(
changed(j+1)

)
D f (x j+1) := D f (x j+1)−step_size(j+1)

If a breakpoint belongs to an interval that has been previously modified, then the enforced
monotonicity conditions on the second derivatives of adjacent intervals must contradict one
another. In turn, the involved first derivatives are decreased towards zero by a predeter-
mined step size.

7: make_monotone(x j, x j+1, f)
8: changed(j) := TRUE

changed(j+1) := TRUE

9: if
(

j > 1 and (x j−1,x j) ̸∈ queue
)
enqueue

(
(x j−1,x j)

)
enqueue

(
(x j,x j+1)

)
if

(
j+1 < n and (x j+1,x j+2) ̸∈ queue

)
enqueue

(
(x j+1,x j+2)

)
Step 8 records the endpoints of the current interval as having been changed, while 9 adds
adjacent intervals to queue that may have inadvertently been made nonmonotone by the
changes to the present interval.

end if

end while

Lux, Watson, Chang, Xu, Wang, and Hong

0 2 4 6 8

0

2

4

6

8

Points sin(x) + x cubic quintic

Figure 3: Depicted above are the monotone cubic and quintic spline interpolants of the function sin(x)+ x
over the points [0,(5/2)π]. Notice that the maximum error of the cubic interpolant is larger, because it only
captures first derivative information at the points. The quintic interpolant captures both first and second
derivative information at the points.

It is mentioned in Ulrich and Watson (1994) that for sufficiently small D f (ki) and D f (ki+1) the admissible
solution interval of second derivative values becomes arbitrarily large. It can also be seen that decreasing
the assigned derivative values towards zero will eventually cause Steps 5 through 7 of Algorithm 1 to all
fail, resulting in Step 8 returning TRUE.

Given the potential for successive monotonicity fixes across all intervals, the worst case runtime of Algo-
rithm 3 is O(sn) for n breakpoints and shrink factor s. In practice this worst case has been observed to be
unlikely.

3 EXPERIMENTAL RESULTS

Given the increased order of approximation, it is naturally expected that some accuracy benefit could be
gained by using a quintic spline over a cubic spline. Experiments 1 and 2 below test some accuracy dif-
ferences between monotone cubic and quintic splines. Experiment 3 analyzes the number of operations
performed by Algorithm 3 with increasingly large samples of monotone data.

3.1 Approximating a Trigonometric Function

For this experiment, the function sin(x)+ x is considered over the interval [0,(5/2)π] as seen in Figure 3.
Given an increasing number of points, the maximum error of cubic and quintic approximations is shown
in Figure 4. The quintic approximation consistently has a maximum error that is roughly half that of the
cubic approximation, given the same number of points. There is an increase in the error gap between the
two approximations as more points are added. The quintic spline requires only 700 points to approximate
the function to the same accuracy achieved by the cubic with 1000 points.

Lux, Watson, Chang, Xu, Wang, and Hong

2 5 10 2 5 100 2 5 1000

10n

1μ

100μ

0.01

1

Cubic Max Errors Quintic Max Errors

Number of Points

M
ax

 A
bs

ol
ut

e
E

rr
or

Figure 4: The error in the quintic and cubic approximations of sin(x)+ x with increasing number of points.
Both axes are log scaled, where µ means ×10−6 and n means ×10−9 on the vertical axis. The quintic
approximation generally provides an approximation with about half of the maximum error of the cubic
approximation, while the relative gap between grows with increasing number of points. In order to achieve
the same absolute error the quintic spline requires ten fewer points at max error 10−4, thirty fewer points at
max error 10−6, and 300 fewer points at max error 10−8.

3.2 Random Number Generation

Consider the cumulative distribution function (CDF) defined by a mixture of three Gaussian distributions
and visualized in Figure 5. The distributions have weights (.3, .6, .1), means (.2, .45, .85) and standard
deviations (.05, .08, .03). 200 random samples are generated from this distribution with both cubic and
quintic approximations from four points, and over 100 trials the resulting spread of empirical distribution
functions (EDFs) are visualized in Figure 6.

While an increased number of points could be used to decrease the error in either approximation, the purpose
of this experiment is to demonstrate the effect approximation error has on random number generation. The
errors in the CDFs are magnified by the variance involved in randomly sampling from a distribution. As a
result, while the cubic and quintic spline approximations have similar maximum error, the cubic distribution
is significantly distorted around the first and second modes.

3.3 Random Monotone Data

This experiment studies the number of times the algorithms is_monotone and make_monotone are
executed for increasingly large sequences of random monotone data. The minimum, median, and maximum
number of times that Algorithms 1 and 2 are executed is recorded, as well as the number of steps taken in
all calls to binary_search. The number of calls and steps grows linearly with n as expected, requiring
roughly one call to make_monotone and 20 binary search steps to create a monotone piece. Some (less
common) problems require an average of three calls to make_monotone per interval.

4 DISCUSSION

The monotone quintic spline interpolant provides a distinct increase in accuracy over the monotone cubic
variant. Although the complexity of the algorithm is increased, the number of points required to achieve the

Lux, Watson, Chang, Xu, Wang, and Hong

0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

1

2

3

x

P
[X

 ≤
x]

P
[X

 ≈
x
]

Figure 5: The cumulative distribution function (top) and probability density function (bottom) for the Gaus-
sian mixture distribution in Experiment 2. The distributions have weights (.3, .6, .1), means (.2, .45, .85)
and standard deviations (.05, .08, .03). Random samples are generated from this mixture distribution by
evaluating the inverse of the CDF at random numbers uniformly distributed in the range [0,1].

0 0.5 1

0

0.2

0.4

0.6

0.8

1

True CDF

EDF Values

Cubic CDF

0 0.5 1

0

0.2

0.4

0.6

0.8

1

True CDF

EDF Values

Quintic CDF

Figure 6: Both cubic and quintic splines are used to approximate the CDF of a Gaussian mixture distribution
with three components. Four CDF points are used to build the approximation, 200 random samples are
generated with the approximate CDFs over 100 trials. The resulting cloud of empirical distribution function
(EDF) values is seen above. The maximum approximation error in the CDFs are similar, .08 for the cubic
and .05 for the quintic. However, the maximum EDF differences observed are doubled by the variance of
random samples, .15 for the cubic and .1 for the quintic.

Lux, Watson, Chang, Xu, Wang, and Hong

n
Checks Fixes Search Steps

min median max min median max min median max
5 4 6 274 0 1 154 3 31 2006

25 28 47 378 2 14 225 80 348 3742
50 61 124 484 6 40 238 217 851 4445
75 102 216 842 14 74 411 463 1491 6333
100 142 306 776 21 107 380 629 2140 7414

Table 1: Here we see a table of the minimum, median, and maximum number of checks, fixes, and binary
search steps required in the execution of make_spline for increasing size sequences, n, over 100 ran-
domly generated sets of monotone data. Notice the maximum for each counter is often significantly greater
than the minimum and median, because the distribution of each counter is skewed right.

same level of accuracy has decreased. In the present state, the algorithm for enforcing monotonicity on a
spline is not as trivially parallel as the cubic algorithm, however it can still be parallelized.

Acknowledging that the algorithm for constructing a monotone quintic spline interpolant is slightly more
complex than the cubic case, gains in accuracy or a decreased necessary number of points are often worth
the computational effort.

5 CONCLUSION AND FUTURE WORK

This paper proposes and tests an algorithm for constructing monotone quintic spline interpolants. Experi-
ments demonstrate an improvement in approximation accuracy over monotone cubic spline interpolants, as
expected based on theory.

There are still open avenues of research going forward, such as an alternative sufficient condition for en-
forcing monotonicity or increased order monotone approximations. If the monotonicity conditions can be
generalized to any order or made linear, the search for a monotone interpolating spline could potentially
be formulated as a convex optimization problem. Finally, this work could be used to improve cumulative
distribution function (CDF) estimates as well as predictive models that use CDFs.

REFERENCES

Berglund, T., A. Brodnik, H. Jonsson, M. Staffanson, and I. Soderkvist. 2009. “Planning smooth and
obstacle-avoiding B-spline paths for autonomous mining vehicles”. IEEE Transactions on Automation
Science and Engineering vol. 7 (1), pp. 167–172.

Brennan, A. 2019, 11. “Measure, Modulation and Metadesign: NC Fabrication in Industrial Design and
Architecture”. Journal of Design History.

Carlson, R., and F. Fritsch. 1985. “Monotone Piecewise Bicubic Interpolation”. SIAM Journal on Numerical
Analysis vol. 22 (2), pp. 386–400.

Fritsch, F., and R. Carlson. 1980. “Monotone Piecewise Cubic Interpolation”. SIAM Journal on Numerical
Analysis vol. 17 (2), pp. 238–246.

Gregory, J. A. 1985. “Shape preserving spline interpolation”. Brunel University.

He, X., and P. Shi. 1998. “Monotone B-spline smoothing”. Journal of the American Statistical Associa-
tion vol. 93 (442), pp. 643–650.

Herman, Daniel Lawrence and Oftedal, Mark J 2015, December. “Techniques and workflows for computer
graphics animation system”. US Patent 9,216,351.

Lux, Watson, Chang, Xu, Wang, and Hong

Hess, W., and J. W. Schmidt. 1994. “Positive quartic, monotone quintic C2-spline interpolation in one and
two dimensions”. Journal of Computational and Applied Mathematics vol. 55 (1), pp. 51–67.

Huynh, H. T. 1993. “Accurate Monotone Cubic Interpolation”. SIAM Journal on Numerical Analysis vol.
30 (1), pp. 57–100.

Knott, G. D. 2012. Interpolating cubic splines, Volume 18. Springer Science & Business Media.

Leitenstorfer, F., and G. Tutz. 2006. “Generalized monotonic regression based on B-splines with an appli-
cation to air pollution data”. Biostatistics vol. 8 (3), pp. 654–673.

Piah, A. R. M., and K. Unsworth. 2011. “Improved sufficient conditions for monotonic piecewise rational
quartic interpolation”. Sains Malaysiana vol. 40 (10), pp. 1173–1178.

Quint, A. 2003, July. “Scalable vector graphics”. IEEE MultiMedia vol. 10 (3), pp. 99–102.

Ramsay, J. O. et al. 1988. “Monotone Regression Splines in Action”. Statistical Science vol. 3 (4), pp.
425–441.

Schmidt, J. W., and W. Heß. 1988, Jun. “Positivity of cubic polynomials on intervals and positive spline
interpolation”. BIT Numerical Mathematics vol. 28 (2), pp. 340–352.

Ulrich, G., and L. Watson. 1994. “Positivity Conditions for Quartic Polynomials”. SIAM Journal on Scien-
tific Computing vol. 15 (3), pp. 528–544.

Wang, Q., and J. Tan. 2004. “Rational quartic spline involving shape parameters”. Journal of Information
and Computational Science vol. 1 (1), pp. 127–130.

Xie, Y., C. B. King, Y. Hong, and Q. Yang. 2018. “Semiparametric models for accelerated destructive
degradation test data analysis”. Technometrics vol. 60 (2), pp. 222–234.

Yao, J., and K. E. Nelson. 2018. “An Unconditionally Monotone C2 Quartic Spline Method with Nonoscil-
lation Derivatives”. Advances in Pure Mathematics vol. 8 (LLNL-JRNL-742107).

AUTHOR BIOGRAPHIES

THOMAS C. H. LUX is a Ph.D. candidate in computer science at Virginia Polytechnic Institute and State
University (VPI&SU) studying under Dr. Layne Watson. His research interests include computational
science, approximation theory, optimization, and artificial intelligence. His email address is tchlux@vt.edu.

LAYNE T. WATSON (Ph.D., Michigan, 1974) has interests in numerical analysis, mathematical program-
ming, bioinformatics, and data science. He has been involved with the organization of HPCS since 2000.

TYLER H. CHANG is a Ph.D. candidate at VPI&SU studying computer science under Dr. Layne Watson.

LI XU is a Ph.D. candidate at VPI&SU studying statistics under Dr. Yili Hong.

YUEYAO WANG is a Ph.D. candidate at VPI&SU studying statistics under Dr. Yili Hong.

YILI HONG (Ph.D., Iowa State, 2009) has interests in engineering statistics, statistical modeling, and data
analysis.

mailto://tchlux@vt.edu

