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1 Introduction

Quantum annealing (QA) provides a practical framework to realize adiabatic
quantum computing (AQC), where AQC is a general purpose quantum com-
puting framework that is known to be equivalent to the quantum gate model
[1]. In the quantum gate model, quantum state vectors evolve through time
via the application of quantum logic gates (unitary operators) [29]. On the
other hand, AQC conceptually produces the solution to a problem through a
single “annealing” operation. This is achieved by transitioning from an initial
Hamiltonian to an arbitrary Hamiltonian that encodes the problem, using the
adiabatic theorem. The standard implementation of QA only solves a subset
of AQC problems because the allowed operators only span a subspace of all
unitary operators. Specifically, QA is limited to annealing over the span of the
stoquastic Pauli-Z matrices, whose eigenstates are strictly real valued [19].

While the general methodology for embedding classical programs in QA is
understood, QA systems can still be tedious to program. D-Wave Systems has
improved accessibility through its Ocean software suite that contains high-
level programming modules for network science and constraint satisfaction
problems. Pakin also provides tools for embedding high-level constraint logic
programs, using a standard cell library [23]. However, these approaches are in-
efficient for linear algebra and mathematical programming applications, mak-
ing hand-crafted solutions preferred in many cases. Linear algebra problems
are ubiquitous in computational and data science, with some notable appli-
cations being least squares fitting, solving large sparse or dense systems, and
even neural network training. Such applications would certainly garner inter-
est in high-profile fields such as machine learning, where the term “quantum
machine learning” was coined by [6], and a quantum variational autoencoder
is described in [21].

In this work, a novel methodology is proposed for least-squares minimiza-
tion of polynomial systems of equations via QA. This broad class of problems
is often referred to as sum of squares (SOS) polynomial minimization, and is a
general case of both the least squares problem and the polynomial real-valued
root-finding problem. Solutions are obtained by mapping the squared error
function for any multivariate polynomial onto a Hamiltonian embedding. To
make the proposed solution accessible, a high-level programming framework
is provided, which automatically handles low-level details such as fixed-point
binary encoding, quadratization, and both physical and logical (minor) em-
bedding of the Ising-Hamiltonian model. This framework is standalone, but
interfaces with D-Wave’s SAPI API. One practical benefit of the squared error
methodology is that the minimum forward error solution will correspond to the
ground state for the Hamiltonian, and lower forward error solutions will have
lower energies. This causes the annealer to tend towards low energy solutions
even when it fails to find the true global minimum. Another benefit of both
the methodology and the framework is that the fixed-point precision of each
variable can be independently specified, and so this work immediately extends
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to nonlinear integer programming problems (such as integer factorization) and
mixed-precision problems.

The remainder of this paper will proceed as follows. Section 2 will present
relevant background in QA, programming and algorithmic concerns, and re-
lated works. Section 3 will introduce the proposed methodology for mapping
multivariate polynomial systems of equations/SOS problems to the Ising-
Hamiltonian model. Section 4 contains a brief analysis of the proposed al-
gorithm in terms of several performance concerns introduced in Section 2.
Section 5 contains technical details of the implementation, with a focus on the
practicalities of the D-Wave machine. Section 6 shows empirical results for n-
bit integer factorization, least squares minimization of a system of polynomial
equations, and solutions to linear systems of equations on the state-of-the-art
D-Wave 2000Q quantum annealer. Finally, Section 7 contains a conclusion and
brief discussion.

2 Background

At its foundation, QA utilizes the physical principle of quantum tunneling [25]
to find grounds states for the Ising-Hamiltonian model

H(σ) =

N∑
i=1

hiσi +

N∑
i=1

N∑
j=i+1

Ji,jσiσj (1)

where N denotes the number of qubits (quantum bits) involved in the compu-
tation (indexed q1, . . . , qN ), σi ∈ {−1, 1} denotes an eigenstate of qi, hi denotes
the bias of qi, and Ji,j denotes the coupler strength between the entangled pair
qi and qj .

Similarly as in AQC, QA achieves the solution to an arbitrary Hamilto-
nian by beginning from the ground state of an initial Hamiltonian H0, whose
solution is known. H0 is then gradually evolved through time into the problem
Hamiltonian H1, via a mathematical homotopy of the form

Hs(σ) = (1− s)H0(σ) + sH1(σ). (2)

Here, the time dependent variable s transitions from 0 to 1 during the anneal-
ing time [2].

If the transformation (2) is adiabatic, meaning that the surrounding tem-
perature is near absolute zero and the rate of change in Hs(σ) is smaller than
the energy gap ∆ between the ground state of H1 and the next lowest energy
eigenstate (i.e., the first excited state), then this process results in a solution to
H1 with probability one. Consequently, the annealing time T required to find
a true ground state with high probability is proportional to O(∆−2|log ∆|6α)
[14], where α is a Gevrey index, which describes the smoothness of the tran-
sition. Rather than increasing the annealing time T (approximately) quadrat-
ically as ∆ shrinks, a more practical approach is to fix T and instead increase
the number of samples (i.e., runs of QA). The probability of not achieving
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the ground state for any of the runs decreases exponentially with repeated
independent samples, while the probability of a single anneal resulting in the
ground state decreases quadratically with a decaying ∆ [19]. As a result, an ex-
ponentially decaying ∆ only requires linearly increasing the number of samples
to achieve the same likelihood of a ground state solution [18].

Minimization of an arbitrary Ising-Hamiltonian is classically NP-complete
[5], and although QA currently remains less efficient than classical heuristic
techniques (such as simulated annealing), both theory [27] and empirical re-
search [7] suggest that QA will eventually overtake classical techniques as the
preferred method for minimizing Ising-Hamiltonian equations. Currently, the
state-of-the-art in QA is pioneered by D-Wave systems, which produces both
hardware and software for minimizing (1) via QA. The current flagship D-
Wave machine is capable of performing QA with over 2000 qubits sparsely
connected according to the Chimera graph topology, in which each qubit is
connected to at most 6 other qubits. The next generation of machines will
support QA with over 5000 qubits on a new Pegasus connection topology [8],
in which each qubit is connected to at most 15 other qubits.

D-Wave’s QA hardware does not implement perfect adiabatic evolution and
must account for real world practicalities such as outside noise, bias leakage,
and short annealing times. Therefore, it is useful to differentiate between the
logical and physical Hamiltonians. The logical Hamiltonian (often referred to in
literature as the minor embedding) will be a functional of the form (1), where
hi and Ji,j are real numbers. Note that not all logical Hamiltonians can be
embedded on a current D-Wave machine. D-Wave requires that hi ∈ [−2, 2],
requires that Ji,j ∈ [−1, 1], uses a quantization step size of approximately
0.01, and only allows for nonzero couplings between qubit pairs qi and qj
that are connected according to some graph topology G [20]. Therefore, it
is important to distinguish the physical Hamiltonian as shown below, which
could be implemented on the current D-Wave hardware.

H̃(σ) =

N ′∑
i′=1

h̃i′σi′ +
∑

(i′,j′)∈G

J̃i′,j′σi′σj′ (3)

Here, N ′ ≥ N is the number of physical qubits required to synthesize all the
required connections through the “chaining” process, as shown in Figure 1.
After the chaining process is completed, the entire Hamiltonian is rescaled by
some factor κ, which is the largest factor such that all resulting h̃i′ ∈ [−2, 2]
and J̃i′,j′ ∈ [−1, 1]. D-Wave provides embedding tools, which use heuristics to
construct the chains and compute the corresponding constant κ.

Due to physical hardware limitations, such as the quantization step size,
manufacturing imperfections, outside noise, and bias leakage, the problem
solved by the D-Wave annealer is generally not identical to the physical Hamil-
tonian in (3). Rather, the D-Wave solves a perturbed model, as shown below.

Ĥ(σ) =

N ′∑
i′=1

(h̃i′ + δi′)σi′ +
∑

(i′,j′)∈G

(J̃i′,j′ + δi′,j′)σi′σj′ (4)
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Fig. 1 Finding a physical embedding: this figure shows a toy 32 qubit system demonstrating
the Chimera graph structure (left) and a synthesized dense network on an individual unit
cell (right). The Chimera graph consists of bipartite 8-qubit unit cells as shown, with sparse
connections between cells. To synthesize a dense 4-qubit network on any individual unit cell,
negative coupler weights (shown in bold) are added. I.e., J0,4 = J1,5 = J2,6 = J3,7 < 0.

The problem (4) will have the same ground state as (3) if ‖H̃ − Ĥ‖∞≤ ∆′,
where ∆′ is the size of the energy gap between the ground and first excited
state of H̃, and ‖·‖∞ denotes the H∞ operator norm. Note that the ratio
‖H̃−Ĥ‖∞/∆′ can be considered analogous to the conditioning of the problem
in this context.

To measure the optimality of an implementation, it is typical to consider
both the number of physical qubits N ′ required to embed the Hamiltonian
and the size of the physical energy gap ∆′. In general, to implement a classical
circuit on a QA machine, the circuit must be transformed into a Hamiltonian
whose ground states correspond to valid input/output combinations as illus-
trated in Figure 2. During this process, it is common to introduce ancillary
qubits, which are important terms in the Hamiltonian, but do not contain
any useful information on input or output. Using basic gates generated via
the above process, it is possible to implement general classical circuits using
the additive property of Hamiltonians [23]. While this methodology is con-
venient, it is wasteful in terms of ancillary bit requirements, and therefore a
hand-crafted solution is preferable for most problems.

Using the transformation σi = 2xi−1 and dropping constant terms (which
offset the energy landscape, but do not affect the locations of the minima), the
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(a)

x1 x2 x3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

⇒

g = 0
a3 > g
a2 > g
a2 + a3 + b2,3 = g
a1 > g
a1 + a3 + b1,3 = g
a1 + a2 + b1,2 = g
a1 + a2 + a3 + b1,2 + b1,3 + b2,3 > g

(b)

x1 x2 x3 x4
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

⇒

g = 0
a4 > g
a3 > g
a3 + a4 + b3,4 > g
a2 > g
a2 + a4 + b2,4 > g
a2 + a3 + b2,3 = g
a2 + a3 + a4 + b2,3 + b2,4 + b3,4 > g
a1 > g
a1 + a4 + b1,4 > g
a1 + a3 + b1,3 = g
a1 + a3 + a4 + b1,3 + b1,4 + b3,4 > g
a1 + a2 + b1,2 > g
a1 + a2 + a4 + b1,2 + b1,4 + b2,4 = g
a1 + a2 + a3 + b1,2 + b1,3 + b2,3 > g
a1 + a2 + a3 + a4 + b1,2 + b1,3 + b1,4 + b2,3 + b2,4 + b3,4 > g

(c)
C(x) = x1 + x2 + x3 + 4x4 + 2x1x2 − 2x1x3 − 4x1x4 − 2x2x3 − 4x2x4 + 4x3x4
⇒

H(σ) = −1
2
σ1 − 1

2
σ2 +

1
2
σ3 + σ4 +

1
2
σ1σ2 − 1

2
σ1σ3 − σ1σ4 − 1

2
σ2σ3 − σ2σ4 + σ3σ4

1

Fig. 2 Embedding a quantum XOR gate: this figure illustrates the process of programming
a quantum annealer, by embedding an XOR gate. The goal is to implement the circuit
x1 ⊕ x2 = x3. The truth table in (a) shows all combinations of x1, x2, and x3, with all 4
valid input/output combinations highlighted. Using the QUBO model, this generates the
algebraic system of inequalities shown on the right hand side, where g denotes the ground
energy of the system. Because the row containing all zeros is a valid solution, g must be 0.
The system of inequalities for (a) has no solution, so an ancillary bit x4 is introduced in (b).
There are 24 ways to assign the value of x4 for the 4 valid states from (a), some of which
produce solvable systems and some of which do not. By trial and error, the rows highlighted
in (b) produce a solvable system, shown on the right hand side. Solving this system produces
the QUBO shown in (c), and applying the isomorphism results in the Hamiltonian below.

Ising model is isomorphic to the quadratic unconstrained binary optimization
(QUBO) model

C(x) =

N∑
i=1

aixi +

N∑
i=1

N∑
j=i+1

bi,jxixj (5)

where xi ∈ {0, 1} are abstract binary variables, ai = 2
(
hi −

∑
j Ji,j

)
, and

bi,j = 4Ji,j . For dealing with binary representations of fixed-point numbers,
the QUBO model is more convenient and will be favored in Section 3. How-
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ever, for performance analyses (Section 4) it is more accurate to consider the
Hamiltonian model, which better describes the physical embedding.

The general problem of finding a least squares solution to a system of poly-
nomial equations is equivalent to globally solving a multivariate SOS polyno-
mial minimization problem. This class of problems should not to be confused
with the class of polynomial least squares problems, which refer to the fitting
of a polynomial to data by solving a linear least squares problem. Since SOS
problems are known to be NP-hard, classical solutions focus on iterating to-
ward a solution by solving sequences of linear matrix inequality problems [22].
In the special case where the system of polynomial equations is consistent, the
problem can often be efficiently solved using homotopy methods [30]. In the
special case of linear and least squares systems, these problems can be solved
with cubic complexity using standard matrix factorization techniques [16].

It should be noted that the current generation of D-Wave machines are
not capable of solving any meaningfully large SOS problems. In fact, the el-
ementary operation of multiplication/factorization is considered difficult for
these D-Wave machines, due to the practical limitations of D-Wave’s technol-
ogy [4]. Related to some of the applications discussed, a good deal of work
has been put into integer factorization, with a focus on security applications.
While Shor’s algorithm has become synonymous with quantum factorization,
quantum annealing requires a different model [28]. Early work in quantum
factorization was pioneered by Peng et al., who produced a general model for
integer factorization [24]. Jiang et al. expanded on this work in the special case
of biprime factorization [18]. Dridi et al. proposed an alternative approach to
biprime factorization using Gröbner bases [13]. In general, to factor an n-bit
binary integer, these approaches require O(n2) qubits and result in an expo-
nentially decaying physical energy gap ∆′. It is also worth mentioning a hybrid
quantum-classical algorithm for nonlinear integer programming, proposed by
Alghassi et al. [3].

For the special case of solving systems of linear equations, quantum algo-
rithms have been proposed for both the gate model [17] and AQC model [15,
31] that achieve exponential speedup in cases where the associated matrix has
a low condition number. For QA, there are two closely related works that were
recently published, both of which achieve a QA solution by embedding the er-
ror function in the Ising-Hamiltonian. Borle et al. [9] propose this methodology
for solving linear systems of equations and least squares problems, but refrain
from analyzing higher-order systems. Chang et al. [11] propose this method
for finding least squares solutions to general systems of polynomial equations,
but use a slightly different binary encoding technique, where fixed-precision
signed arithmetic is achieved via a linear transformation of unsigned binary
integers. The present work accompanies [9,11] by providing both an extension
to higher order systems and an easily accessible coding framework for solving
arbitrary polynomial SOS problems on a QA system.
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3 Embedding Polynomials

Let v ∈ Rd and let p(v) be a multivariate polynomial of finite degree. The
goal of this section is to find real-valued least squares solution to equations of
the form p(v) = 0. To do so, define the squared error function

E(v) = (p(v))
2
. (6)

If p(v) = 0 has real-valued solutions, then minimizing E(v) will produce an
element of the solution set. If p(v) = 0 is not exactly solvable for v ∈ Rd, then
minimizing E(v) will produce a solution in the least squares sense. Similarly,
given a system of polynomial equations p1(v) = 0, . . ., pm(v) = 0, the total
SOS error is given by

E(v) = (p1(v))
2

+ . . .+ (pm(v))
2
. (7)

This section will show how to encode H(σ) = E(v) + τ , where H(σ) is an
Ising-Hamiltonian of the form (1), E(v) is of the form (6), and τ is a constant
energy offset. SOS errors of the form (7) can be implemented trivially by
summing over the individual Hamiltonians corresponding to each equation in
the system. As will be shown, the following process considers binary number
representations of any fixed precision, including those with mixed-precision
and integer-valued problems.

Let xi ∈ {0, 1} be the bit value of the ith bit of x, let e denote a fixed
exponent, and let s ∈ {−1, 1} denote whether x is signed or unsigned (−1
for signed variables and 1 for unsigned variables). Then the following equa-
tion defines an n-bit binary encoding of x using two’s complement for signed
numbers and a fixed-point precision determined by the exponent e. Note that
choosing e = 0 results in an integer-valued problem.

x = 2e

(
n−1∑
i=1

2i−1xi + 2n−1xns

)
(8)

Now, let v = [x(1), . . . , x(d)]T and combine (6) and (8) to express the energy
as a multivariate binary polynomial with real-valued coefficients. To get a
QUBO expression of the form (5), terms with three or more interacting vari-
ables must be quadratized (reduced to two-local form). Many quadratization
methods exist [12], but all known methods that maintain the squared-error
energy landscape (i.e. reproduce the ground state and the full spectrum) uti-
lize ancillary qubits. This work employs reduction by substitution [26] for its
equivalence with the logical AND operation. The accompanying AND QUBO
enforces z3 = z1 ∧ z2 by assigning weights

C∧(z) = 3z3 + z1z2 − 2(z1z3 + z2z3). (9)

For example, consider the binary energy polynomial Ẽ(x) = x1x2x3x4.
Then setting y1 = x1 ∧ x2 and y2 = x3 ∧ x4 using (9) and summing over
QUBOs gives

C̃(x,y) = y1y2 + 3y1 + 3y2 + x1x2 + x3x4 − 2(x1y1 + x2y1)− 2(x3y2 + x4y2).
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When quadratizing terms as above, it is important to weight each occur-
rence of C∧ by some large constant ω so that breaking an AND constraints
incurs a large penalty. Otherwise, the annealer could conceivably break an
AND constraint to achieve an impossibly low squared error, resulting in a
nonsensical solution. As a rule of thumb, ω should be significantly greater
than the expected squared residual but small enough so that ∆′ is not unduly
affected (as detailed in Section 4). As long as the AND constraints are satis-
fied, the resulting QUBO will satisfy C(x) ∼= E(v) and the resulting logical
Hamiltonian will satisfy H(σ) ∼= E(v)+τ , where the congruence is understood
through the binary encoding of each x(k).

4 Algorithm Analysis

This section provides an overview and analysis of the important factors to
consider when encoding polynomial systems of equations onto a quantum an-
nealing architecture (resembling modern D-Wave hardware).

4.1 Energy Gap

The range of energies grows and shrinks exponentially with the bits of pre-
cision n, yielding a O(2−n) decay in the physical energy gap ∆′ after the
necessary rescaling operations. When mixed-precision variables interact, ∆′ is
determined by the effective precision n̂, which is the difference between the
largest and smallest nonzero absolute value representable among all the vari-
ables in the system. The number of additions α and number of multiplications
µ have, respectively, linear and exponential effects on the maximum energy of
the logical Hamiltonian. Therefore, ∆′ shrinks inverse linearly with respect to
α and exponentially with respect to µ. Similarly as with addition, the num-
ber of equations m in a system decreases ∆′ at most inverse linearly since
the equations do not directly interact, but may share some terms in com-
mon. Combined, this yields a rate of decay for the physical energy gap (after
rescaling) of

∆′ ≈ O
(

1

αm2n̂µ

)
.

In general, it can be seen that ∆′ will be primarily determined by the expo-
nential decay 2−n̂µ.

4.2 Number of Qubits

Other than the number of qubits required to represent the binary numbers,
some ancillary qubits may be introduced into the logical Hamiltonion during
both quadratization and physical embedding. Quadratization is performed an-
alytically by the high-level tool described in Section 5, and so the ancillary
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qubit requirements due to quadratization can be easily analyzed. When ad-
dition or subtraction is performed, no additional quadratization is required.
However, multiplication between two variables with n0 and n1 bits of precision
requires n0 × n1 ancillary qubits (one for each quadratization). Given a max-
imum of µ multiplications per individual polynomial (single equation) and n
bits of precision, the number of ancillary qubits introduced through quadra-
tization will be O(mnµ). Notice that increasing the number of equations m
can at most linearly increase the number of ancillary quadratization terms re-
quired (when no variable products are shared between equations). Also notice
that the number of variables d does not affect the number of ancillary qubits
due to quadratization, for a fixed µ.

When embedding the physical Hamiltonian for a polynomial system, two
factors will dominate the number of necessary qubits. First, the annealer must
generate a fully connected subgraph of size n(µ+1)/2. Second, given some vari-
able x̂ is multiplied by k other distinct variables throughout a system, x̂ will
have at least k connections to each of its bits. The modern Chimera graph
structure is not conducive to fully-connected graphs nor small sets of qubits
with high graph centrality, hence experimental results show a growth rate
greater than knµ for large problems.

4.3 Sensitivity to Perturbation

Given the perturbed Hamiltonian model (4), it is reasonable to wonder how the
perturbations δi and δi,j will affect the quality of the solution. In particular,
one might wonder whether the effects could be great enough so that the ground
state of the perturbed problem is no longer the ground state of the original
problem.

Consider first an arbitrary physical Ising-Hamiltonian H̃ involvingN ′ phys-
ical qubits, as defined in (3) and its corresponding perturbed Hamiltonian Ĥ
as in (4). Suppose that |δi|, |δi,j |< δ, where δ > 0 is a constant that represents
the largest magnitude perturbation possible on the current hardware. Com-
bining equations (3) and (4), applying the upper bounds δ, and combining like
terms yields

‖H̃ − Ĥ‖∞= sup
σ
|H(σ)− Ĥ(σ)|≤ sup

σ

∣∣∣∣∣∣
N ′∑
i′=1

δσi′ +

N ′∑
i′=1

∑
(i′,j′)∈G

δσi′σj′

∣∣∣∣∣∣ .
In the worst case, assuming nonzero connections between all physical qubits,

the right hand side is upper bounded by (N ′ +N ′L′)δ, where L′ is the num-
ber of connections per node in the physical graph G. For the Chimera graph,
each node has at most 6 undirected edges. So for the D-Wave Chimera archi-
tecture, the condition that guarantees a correct ground state for the physical
Hamiltonian Ĥ is 7N ′δ < 2∆′.
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5 Experimental Methods

For the results presented in Section 6, logical Hamiltonians were generated via
the process described in Section 3 and run on a D-Wave 2000Q machine. Before
performing quadratization or constructing the logical chains, the initial rescale
factor λI necessary to encode the logical Hamiltonian weights into the range
allowed by the physical Hamiltonian was computed. For all demonstrations
the AND weights used for quadratization were set to λI/8, with 1/8 being the
largest power of 2 multiplier that yields correct solutions on all test problems.
After adding the AND gates to the logical Hamiltonian, the final rescale factor
λF necessary to encode the physical Hamiltonian was computed and the chain
strengths were set to λF . Finally, the minorminer.find_embedding tool from
D-Wave’s Ocean toolkit was used to construct the logical chains and perform
the necessary rounding, completing the physical embedding [10]. Any chain
breaks were resolved by majority vote, and similarly, any violated AND gates
were corrected in a post-processing step. For each run, the default anneal-
ing time of 20 microseconds is used, along with D-Wave’s default annealing
schedule.

5.1 Code Availability

Python code with a user-friendly interface has been produced that automates
the process for generating QUBOs, handles AND gate and chain weighting,
generates physical Hamiltonian embeddings, runs on either simulated or phys-
ical hardware, and resolves AND gate and chain breakage. Each of these steps
is carried out exactly as described above. This code library was used for gen-
erating the Hamiltonians in the Results section and is available on GitHub at
https://github.com/tchlux/qaml. Note, the library uses the SAPI API, and
therefore depends on several D-Wave toolkits for finding physical embeddings
on the Chimera graph structure and accessing D-Wave’s cloud QA solvers.
The exact code used for replicating the experiments and the corresponding
data for Tables 1, 3, and 4 are located in the qaml/experiments subdirectory.
It is worth noting how concisely the following experiments are implemented
in the provided framework (just 5, 7, and 14 lines of code for experiments 6.1,
6.2, and 6.3, respectively), as the high-level abstractions are conducive to pro-
gramming and solving arbitrary polynomial systems on a quantum annealer
with ease.

6 Results

In this section, Hamiltonian embeddings for error functions of the form (6)
and (7) are implemented for solving biprime factorization, polynomial SOS
problems, and linear systems of equations. For the first two problem, the focus
is placed on increasing the bit precision n, since it was shown in Section 4 that
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increasing the relative precision causes the physical energy gap ∆′ to decay
exponentially. For problems with n bits of precision per variable, the number
of samples was assigned to 500n (a linear increase). As outlined in Section 2,
this should maintain a (nearly) constant probability of achieving the ground
state under ideal conditions. However, since the problem conditioning is largely
determined by ∆′, it is somewhat concerning that the perturbations in (4)
could have a significant negative impact on the computation for large precision
n. In fact, the problem conditioning does seem to cause some significant decay
in the probabilities. However, the presented results achieve the ground state
for every problem that could be embedded on the current D-Wave hardware,
indicating that the primary limiting factor is the number of physical qubits
N ′ required to embed the physical Hamiltonian.

For the linear system problem, the focus is shifted to how the proposed
methodology is affected by increasing the number of equations and variables,
with a fixed four-bit precision. Since there is no multiplication between vari-
ables in a linear system, the analysis results of Section 4 suggest that these
types of problems should scale better on the D-Wave 2000Q hardware. How-
ever, somewhat surprisingly, the D-Wave is unable to find exact solutions for
relatively small linear systems, even when the true solution is exactly repre-
sentable for the binary encoding.

6.1 Factorization

To factor a biprime M = x(1)x(2), where x(1) and x(2) are n-bit unsigned
integers, the corresponding polynomial is

p
(
x(1), x(2)

)
= x(1)x(2) −M

and the squared error function is given by

E
(
x(1), x(2)

)
=
(
x(1)x(2) −M

)2
. (10)

Creating n2 ancillary qubits yi,j = x
(1)
i ∧ x

(2)
j , this energy function can be

embedded into a QUBO as described in Section 3. Note that the best avail-
able techniques also require O(n2) ancillary qubits for prime factorization [13,
18,24]. The results for embedding this QUBO as a physical Hamiltonian (as
described in Section 5) and running on the D-Wave hardware are shown in
Table 1. Similar to the work done by Jiang et al. for biprime factoring, this
methodology encodes M directly into the Hamiltonian as a constant, rather
than wasting extra qubits to store M as a variable. In fact, Jiang et al. used
a nearly identical methodology for arbitrary integer factorization, but favored
a multiplication table for factoring biprimes.

The most recent work in biprime factorization solves a slightly larger prob-
lem [13,18] by assuming properties of the factors. In contrast, this methodology
can factor arbitrary integers (which may not be biprimes) while still achieving
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Bits x(1) x(2) x(1)x(2) Logical Physical Sq. Error Occurrence
2 2 3 6 8 16 0 180
3 5 7 35 15 69 0 311
4 11 13 143 24 148 0 35
5 29 31 899 35 349 0 82
6 59 61 3599 48 658 0 7
7 113 127 14351 63 1293 0 3
8 241 251 60491 80 – – –

Table 1 Using the squared-error energy function methodology, biprimes with various bits
of precision are factored. The columns depict the number of bits, the numbers multiplied
and their product, the number of logical and physical qubits required, the minimum squared
error (minimum energy) achieved by the quantum annealer, and the number of samples that
produced the optimal solution. The number of samples taken grows as 500n, where n is the
number of bits. Correct solutions are found for all embedded problems, however at 8-bits
no physical embedding could be discovered for the logical Hamiltonian on the available
the hardware. The multiplication circuit constructed with this methodology has a dense n2

subgraph as well as a dense n subgraph, making the number of physical qubits required to
embed the Hamiltonian grow faster than the number of logical qubits on the Chimera graph
structure of the available quantum annealing hardware.

the same number of bits of precision as those best known results. As presented,
arbitrary integer factorization takes the same form as biprime factorization,
but has more candidate solutions (and an innately higher likelihood of success).
For that reason, only biprimes are considered here. The correct factorization
is obtained up to M = 14351 (whose prime factors are both 7-bit unsigned
integers) by minimizing (10), which is also the largest problem that can be
successfully embedded on current quantum annealing hardware. At n = 8 bits
of precision, the Hamiltonian failed to embed onto the D-Wave 2000Q system,
due to size limitations.

6.2 Nonlinear Least Squares

Let v = [x, y]T ∈ R2, and consider the following system of polynomial equa-
tions.

xy = 1
x2 + y2 = 1
x− y = 0

(11)

This results in the squared energy function E(v) = (xy − 1)2 + (x2 + y2 −
1)2 + (x − y)2. A graph of the system (11) is shown in Figure 3. To find
the solution in the first quadrant, x and y are encoded as unsigned n-bit
numbers each with an exponent of e = −n using the encoding (8). The true
solution is x = y ≈ 0.77, with a minimum squared residual of r2 = 0.2. For
n = 2, the physical embedding is shown in Table 2. As seen in Table 3, for
n > 2, the physical qubit requirement appears to grow super-linearly but
sub-exponentially with the logical qubit requirement.

The results collected on the D-Wave machine are shown in Table 3. For
all tests through up to 6 bits of precision, the closest representable solution is



14 Chang, Lux, and Tipirneni

-2 -1 1 2

-2

-1

1

2

Fig. 3 Least squares graph: this figure shows a plot of the least squares problem defined
by the polynomial system of equations xy = 1, x2 + y2 = 1, and x− y = 0. The solutions of
(0.7746, 0.7746) and (−0.7746,−0.7746) are shown.

Logical Bit Embedding Logical Bit Embedding
1 1376, 1383, 1248 6 1390, 1382, 1384
2 1380, 1379, 1251 7 1389, 1381
3 1261, 1258, 1253 8 1391, 1257, 1385
4 1249, 1377 9 1252, 1250
5 1388, 1386 10 1255, 1263

Table 2 The exact embedding used in the polynomial least squares problem for 2 bits of
precision is displayed with the logical bit index in the Logical Bit column and the phys-
ically embedded bit indices on hardware (all of which are chained to be equal) in the
Embedding column. Notice that the Chimera graph structure requires 25 physical qubits
to represent the 10 logical qubits. The physical embedding was heuristically chosen using
minorminer.find_embedding, which constructed chains of 2 and 3 qubits to match the log-
ical Hamiltonian to the connectivity of the Chimera graph. Notice also that the physical
qubit indices are an automatically selected subset of the 2000 qubits available on the D-
Wave 2000Q machine. The logical QUBO uses bits 1–4 to store the variables x and y and
bits 5–10 are ancillary bits introduced through quadratization.
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Bits x y Logical Physical Sq. Error Occurrence
2 3/4 3/4 10 26 0.2070 455
3 3/4 3/4 21 104 0.2070 50
4 3/4 13/16 36 286 0.2061 82
5 25/32 25/32 55 596 0.2005 21
6 25/32 49/64 78 1216 0.2004 2
7 99/128 99/128 105 – – –

Table 3 Using the squared-error energy function methodology, a polynomial least squares
problem is solved. The columns depict the number of bits of precision in the variables, the
best representable solution to the least squares problem, the number of logical and physical
qubits required, the minimum squared error (minimum energy) achieved by the quantum
annealer rounded to 4 decimal digits, and the number of samples that produced the optimal
solution. 500n samples were drawn from the quantum annealer for all tests, where n is the
number of bits of precision in the solution. In this test, the numbers are represented in fixed
point notation where all bits are after the decimal. This means that the binary digits encode
negative powers of two. The obtained solutions are the best possible solutions that can be
achieved for their respective precision, however at 7-bits no physical embedding could be
discovered for the logical Hamiltonian on the available the hardware.

found. For n = 7 bits of precision, again, the Hamiltonian failed to embed due
to size constraints.

6.3 Linear System of Equations

Thus far, the presented results have featured an integer-valued and nonlinear
problem, and focused on increasing the bit precision n. In general, integer
valued and nonlinear problems are interesting because they do not classically
admit analytic solutions, as commented on by Chang et al. [11]. By contrast, as
discussed by Borle et al. [9], the time complexity involved in embedding linear
and least squares systems of equations into a Hamiltonian rivals the time
complexity of solving the system using classical techniques. However, linear
and least squares systems of equations remain interesting problems because of
their wide usage in data science and applied mathematics. Furthermore, the
proposed method could still be useful in the context of large sparse systems.

In order to study how the proposed method scales with increasing numbers
of variables and equations, consider a K × K linear system of equations for
K = 2, . . . , 8. To demonstrate signed linear algebra, one set of experiments is
carried out using the two’s complement binary encoding in (8) with no bits
of precision before the decimal and three bits of precision after the decimal.
To demonstrate unsigned linear algebra, another set of experiments is carried
out using the unsigned binary encoding from (8) with one bit of precision
before the decimal and three bits of precision after the decimal. The results
are shown in Table 4. Note that under the proposed methodology, it is not
apparently “easier” to solve a trivial system. Therefore, for convenience of
analysis and reproducability, the embedded system in the signed case is of the
form B0v = 0, where the coefficients in the matrix B0 are randomly generated
numbers in the range (−1, 1) rounded to the nearest multiple of 0.25. In the
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K Logical Physical

Unsigned

S.E. Occ.

Signed

S.E. Occ.
2 8 22 0.000 24 0.000 2
3 12 38 0.000 23 0.000 27
4 16 80 0.005 3 0.013 1
5 20 130 0.026 1 0.048 1
6 24 202 0.037 1 0.048 1
7 28 267 2.604 1 1.882 1
8 32 312 0.917 1 0.767 1

Table 4 Using the squared-error energy function methodology, a linear system is solved.
The columns depict the number of variables and equations in a test (K × K matrix),
the number of logical and physical qubits required, the minimum squared error (minimum
energy) achieved by the quantum annealer rounded to 2 decimal digits, and the number
of samples that produced the best achieved solution. 500K samples were drawn from the
quantum annealer for all tests. In this test, the numbers are represented in 4 bit fixed point
notation with 3 bits after the decimal. The embeddings used by the signed and unsigned
systems are identical, only QUBO coefficients vary. Best achievable solution has 0 error for
all K.

unsigned case, a similar system B1v = c1 is constructed, such that the solution
is instead v = 1. All the presented problems use four bit variables, which is
standard for the D-Wave 2000Q system [9], and are run for 500K samples.

Note that Borle et al. [9] were able to solve least squares systems of size
100 × 8 to reasonable accuracy, by increasing the annealing time from 20
microseconds (the default value) up to 50 microseconds and performing 10,000
samples. For the experiments shown here, both the signed and unsigned linear
systems are solved and an exact solution is obtained up to a system of size 3×3.
For larger systems, an inexact approximate solution is still obtained. Although
Section 4 indicates that the proposed methodology should scale better with
the number of variables d than with the precision n, these results suggest
the opposite, since the only limiting factor in Sections 6.1 and 6.2 was the
size of the D-Wave 2000Q machine. It is worth noting that the physical qubit
requirements in Table 3 do not challenge the size limitations.

The primary objective of these experiments is to demonstrate generality
and provide an accessible method of encoding polynomial SOS problems on
modern QA systems. Although it was not demonstrated, it is reasonable to
assume that improved results can be obtained by increasing the annealing time
and sample count.

7 Conclusion and Future Work

In this work, a methodology is proposed for encoding polynomial SOS mini-
mization for both fixed-point decimal and integer valued problems. To achieve
this, the squared error function is mapped to the QUBO model, which is iso-
morphic to the Ising-Hamiltonian model, using a two’s complement encoding
and the quadratization scheme of Rosenberg [26]. The current state-of-the-
art D-Wave Chimera architecture is able to solve the proposed embedding
for a wide variety of problems, some of which do not admit analytic classical
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solutions, with the primary limitation being the qubit requirement for large
systems. The fact that the QA ground state is a minimum forward error so-
lution carries tremendous advantages for ill-conditioned problems. In general,
these results accompany and extend the recently published results of Borle et
al. [9] and Chang et al. [11].

Overall, this is a powerful methodology with tremendous applications in the
areas of numerical analysis, machine learning, computer security, and general
scientific computing. As the state-of-the-art in quantum annealing hardware
continues to evolve, this methodology should scale to increasingly complex
problems.
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