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Abstract— Many fields of science rely on the collection
of samples and estimation of true population distributions
from those samples. There are several effective nonparametric
methods for approximating a true distribution from empirical
data, however it is unclear which methods produce the best
approximations in practice. This work presents a case study
on the effectiveness of various distribution approximations.
Results show that piecewise linear approximations produce the
smallest maximum absolute error, while the classic empirical
distribution function (EDF) produces the smallest median
absolute error as well as the smallest absolute error at lower
percentiles when approximating a distribution from a sample.
When building distribution prediction models, the piecewise
quintic and cubic approximations produce the lowest absolute
error at most error percentiles. These initial results encourage
more research on the best methods of fitting empirical data with
smooth functions to generate accurate distribution approxima-
tions.

I. INTRODUCTION

Empirical samples play a pivotal role in science. Experi-
ments are run, data is recorded, and that data is used to draw
conclusions about the truth. When an experiment is run many
times with varying outcomes, it is common to describe the
truth as a random variable. In this work continuous (numeric)
outcome random variables are considered. In this context,
a random variable X is precisely defined by its absolutely
continuous cumulative distribution function (CDF) FX and
the derivative of the CDF, the probability density function
(PDF) fX . As samples are drawn from X , the value of the
CDF can be estimated at the sample points by measuring the
probability at which other samples are less than or equal to
that value. In this sense empirical data defines an empirical
distribution function (EDF). The points that define the EDF
are used to construct approximations of the true underlying
CDF.

An approximation of a CDF can have varying levels of
smoothness and, for empirical purposes the approximations
are constructed over a closed interval. Piecewise polynomial
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Fig. 1. A demonstration of the linear fit and the classic EDF over a sample
of 10 points. This data is normalized to be in the range [0, 1] and the right
half of the domain is cropped out of this plot. Notice that the EDF points do
not necessarily (and often do not) exactly equal the true CDF at any given
position. The sampling inherently introduces variance into measurements of
the CDF. This makes producing an accurate approximation difficult, as will
be seen.

functions (splines) provide the smooth approximations for
animation in graphics [1], [2], aesthetic structural support in
architecture [3], efficient aerodynamic surfaces in automotive
and aerospace engineering [3], and most importantly to
this work they can provide accurate nonparametric approx-
imations in statistics [4]. While polynomial interpolants or
regressors apply broadly, splines are often a good choice
because they can approximate globally complex functions
while minimizing the local complexity of an approximation.

In this statistical work, the construction of a monotone in-
terpolating spline that is continuous in its derivatives could be
meaningfully useful [5]. A function with C1, and especially
C2 continuity could approximate a cumulative distribution
function to a high level of accuracy with relatively few inter-
vals. A twice continuously differentiable approximation to a
cumulative distribution function (CDF) would also produce
a corresponding probability density function (PDF) that is
continuously differentiable, which is a desirable property
many standard parametric distributions maintain.

There is publicly available software for monotone piece-
wise polynomial interpolation, including quadratic [6], cubic
[7], and (with limited application) quartic [8], [9], [10] cases.
Theory has been provided for the quintic case [11], [12].
Recently an algorithm for the construction of monotone
quintic splines has been produced as well (citation pend-
ing).This work considers the EDF, a linear interpolant, a
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Fig. 2. A demonstration of the monotone cubic and quintic spline
interpolants over a sample of 10 points. This data is normalized to be in
the range [0, 1] and the right half of the domain is cropped out of this
plot. Notice that the difference between EDF points and the true CDF
reduce the accuracy of first derivative (for both) and second derivative (for
quintic) estimates in the interpolants, magnifying the error in the empirical
estimations of CDF values.

monotone cubic spline interpolant, and a monotone quintic
spline interpolant as candidate approximations.

In the next section, the methodology of this work is
outlined and experimental setup is detailed. In Section III,
three experiments related to the approximation of cumulative
distribution functions are presented and analyzed. Finally
Section IV concludes.

II. METHODOLOGY AND DATA

In order to identify the best performing approximation
techniques for distribution estimation, a case study on real-
world data is presented and three experiments are run on
that data to test various fits. First the accuracy of distribution
approximations with varying sample sizes is studied, then the
likelihood of any technique having the smallest maximum
error is estimated, and finally the approximations are used
to make predictions in a distribution prediction application
similar to [13]. Each experiment presents a unique, albeit
with limited data, perspective on the quality of approximation
provided by the four distribution approximation techniques.

The CDF modeling case study is constructed from a
four-dimensional dataset produced by executing the IOzone
benchmark [14] on a homogeneous cluster of computers.
Each node contains two Intel Xeon E5-2637 CPUs offering
a total of 16 CPU cores with 16GB of DRAM. While the
CPU frequency varies depending on the test configuration,
the I/O from IOzone is performed by an ext4 filesystem
sitting above an Intel SSDSC2BA20 SSD drive. At the time
of data collection, Linux kernel Version 4.13.0 was used. The
system performance data was collected over two months by
executing IOzone 10000 times for each of a select set of 17
system configurations, for a total of 170 thousand executions
of IOzone. A single IOzone execution reports the max I/O
throughput in bytes per second seen for the selected test type.
For this case study, only the results of a “readers” test are

considered, where bytes are sequentially read from the SSD.
The summary of the data for the experiments for this paper
can be seen in Table I. Distributions of raw throughput values
being modeled can be seen in Figure 3.

The performance of approximation techniques that predict
probability functions can be analyzed through a variety of
summary statistics. The first two experiments study the dis-
tribution of absolute differences between approximated CDFs
and the true CDFs. This distribution over many trials gives an
idea of the expected error. The last experiment in this work
analyzes the max absolute difference between approximated
and true CDFs, also known as the Kolmogorov-Smirnov (KS)
statistic [15] for its compatibility with the KS test.

The two-sample KS test is a useful nonparametric test
for comparing two CDFs while only assuming stationarity,
finite mean, and finite variance. The null hypothesis (that
two CDFs come from the same underlying distribution) is
rejected at level p ∈ [0, 1] when

KS >

√
−1

2
ln

(
p

2

)√
1

n1
+

1

n2
,

with distribution sample sizes n1, n2 ∈ N . For all applica-
tions of the KS test presented in this work n1 = n2.

Finally an example of the round-trip prediction methodol-
ogy from known and predicted distributions to the calculation
of error can be seen in Figure 4. The Delaunay triangulation
is a well-studied geometric technique for producing an
interpolant [16]. The Delaunay triangulation of a set of data
points into simplices is such that there are no data points
inside the sphere defined by the vertices of each simplex.
For a d-simplex S with vertices x(0), x(1), . . ., x(d), and
functions Fx(i) , i = 0, . . ., d, y ∈ S is a unique convex
combination of the vertices,

y =

d∑
i=0

wix
(i),

d∑
i=0

wi = 1, wi ≥ 0, i = 0, . . . , d,

and the Delaunay interpolant Fy at y is given by

Fy =

d∑
i=0

wiFx(i) .

In the case of these experiments, the file size, record size,
thread count, and CPU frequency are first normalized to the
unit hypercube. After normalization, Delaunay predictions
are made via a leave-one-out method resulting in throughput
data from five known configurations being used to predict
one unknown throughput distribution. The Delaunay method
is used to select the five source distributions as well as
provide the convex weights associated with each of the
source distributions that will most likely produce the pre-
dicted distribution.

III. RESULTS

All experiments that follow will consider the differences
between CDF approximations given by the EDF, a linear
interpolant, a monotone cubic interpolant, and a monotone
quintic interpolant. In the first experiment, all four methods
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Fig. 3. A histogram of all throughput values across the 17 unique system
configurations and 170 thousand executions of a “readers” test in IOzone.

System Parameter Values
File Size (KB) 4, 64, 256, 1024, 8192, 16384, 32768, 65536

Record Size (KB) 4, 8, 16, 32, 64, 128, 4096, 8192, 16384
Thread Count 8, 16, 24, 32, 40, 48, 56, 64

Frequency (GHz) 1.2, 1.6, 2, 2.3, 2.8, 3.2, 3.5

TABLE I
A DESCRIPTION OF SYSTEM PARAMETERS CONSIDERED FOR IOZONE.
RECORD SIZE MUST BE LESS THAN OR EQUAL TO FILE SIZE DURING

EXECUTION. IN ALL, 10 THOUSAND REPEATED TRIALS ARE RUN AT 17

UNIQUE SYSTEM CONFIGURATIONS.

are used to approximate the “true” distributions of the ten
thousand throughput values at each system configuration.
One hundred random collections of k samples are drawn
from each true distribution for k = 10, 50, 200 and all
methods are used to approximate the true distribution from
each sample. In Figure 5, the distributions of absolute differ-
ence between the “true” CDF and each approximated CDF
at 1000 equally spaced percentiles is shown. The sample of
50 produces almost exactly half the errors observed with
10 samples, and the error is roughly halved again when
increasing to 200 samples. Aside from the reduction in
accuracy caused by sample size, most approximations appear
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Fig. 4. In this example, the general methodology for predicting a CDF
and evaluating error can be seen. The Delaunay method chose three source
distributions (dotted lines) and assigned weights {.3, .4, .3} (top to bottom at
arrow). The weighted sum of the three known CDFs produces the predicted
CDF (dashed line). The KS Statistic (arrow) computed between the true
CDF (solid line) and predicted CDF (dashed line) is 0.2 for this example.
The KS test null hypothesis is rejected by p-value 0.01, however it is not
rejected by p-value 0.001.
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Fig. 5. The distribution of absolute errors with 10 (top), 50 (middle),
and 200 (bottom) samples for each approximation method. Notice that
the EDF performs slightly better than other methods (more small absolute
errors) when there are only 10 samples. Given 50 or more samples, all the
approximations produced nearly identical errors.

to be nearly identical. When only 10 samples are observed,
the EDF has slightly less absolute error than other techniques
between the median and third quartile. This difference is very
minor, and difficult to observe.

The second experiment considers the KS statistic (maxi-
mum absolute error) rather than the aggregate of errors. An
increased collection of sample sizes is considered, with k =
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300,
400, 500. For all k, 100 random samples of k throughput
values are drawn from the true distributions and approximate
CDFs are constructed via each of the four methods. The error
of each approximate CDF is measured at 1000 equally spaced
percentiles and the maximum absolute error is recorded.
At each sample size, Figure 6 depicts the probability that
any given approximation method produces a distribution
estimate with the lowest KS statistic. In this measure of
error, the piecewise quintic and cubic approximations to
the CDF provide the most accurate estimate of the true
CDF. This result reveals that the chosen measure of error is
important in determining which CDF approximation method
is most suited to an applications. The EDF provides the
lowest expected absolute error, however, the more smooth
approximations appear to provide lower maximum absolute
error.

The third experiment considers a distribution prediction
application. In this case, the Delaunay method was applied
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Fig. 6. The probability that any one of the distribution approximation techniques has the lowest KS statistic among all the techniques when given a
varying number of samples. Notice that the linear approximation remains the most likely to have the smallest KS statistic for all sample sizes, closely
followed by the cubic.

0 0.1 0.2

0

0.5

1

EDF

Linear

Cubic

Quintic

Absolute Approximation Error

C
D

F
 o

f 
A

bs
ol

ut
e 

E
rr

or

Fig. 7. The result of using Delaunay to predict distributions. Notice that
the best performing, lowest error (to the left), approximations at almost
all absolute error percentiles are the cubic and quintic interpolants, closely
followed by the linear interpolant. Interestingly, these results are contrary to
pure distribution approximations from a sample. This likely has to do with
the inherent smoothing that happens when multiple different approximations
are combined to make one prediction.

to choose five source distributions and convex weights that
will predict the throughput distribution at the system configu-
ration with a 2.8GHz CPU frequency, 16 megabyte (MB) file
size, 16MB record size, and 64 threads. This configuration is
predicted because it is the only interpolation point (configu-
ration inside or on the convex hull of other configurations)
among the 17 available system configurations. An example
of the prediction methodology can be seen in Figure 4.
The distribution of absolute errors measured at 1000 equally
spaced percentiles of the true CDF for all four approximation
methods can be seen in Figure 7. In this case the piecewise
quintic and cubic approximations provide the best predictions
overall. The quintic and cubic methods produce smaller
errors than the piecewise linear and EDF approximations at
more than 90% of measurements.

The three experiments presented in this section have each
tested a unique facet of distribution approximation. The
first experiment analyzes the approximation of a distribution
from a sample when measuring the aggregate absolute CDF
approximation error; in this case the EDF largely produces

the best approximations. The second experiment analyzes the
maximum absolute error when approximating a CDF from a
sample; in this case the monotone quintic and cubic spline
interpolants are most likely to provide the best approxima-
tion. The third and final experiment analyzes the aggregate
absolute error when predicting unobserved distributions, for
which the monotone quintic and cubic splines produced the
best overall CDF approximations.

IV. CONCLUSION

This preliminary case study on the best functions for
approximating cumulative distribution functions from em-
pirical data has given some actionable insights. Specifically,
the choice of error measure is important in deciding which
distribution approximation method to apply to a sample.
The standard empirical distribution function has the lowest
expected absolute error when approximating a CDF given a
sample of data. However, more smooth estimates like mono-
tone quintic splines produce lower expected KS statistics
(maximum absolute error), and are expected to have lower
error in distribution prediction applications.

Future research may extend this case study to other data
sets and include a more exhaustive distribution prediction
test suite (experiment three). Tangentially, future work may
target improved estimates of the first and second derivatives
of the true CDF given a sample of data in order to reduce
the approximation error of the monotone quintic and cubic
spline methods.
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