
Analytic Test Functions for Generalizable
Evaluation of Convex Optimization Techniques

Thomas C. H. Lux1, Tyler H. Chang1

Abstract—Convex optimization algorithms such as gradient
descent, quasi-Newton methods, and their variants are designed
to find the global minimum of strongly convex functions. When
these algorithms are applied to the minimization of non-convex
functions they offer no robust theoretical guarantees. Despite
the lack of guarantees, many methods still find good solutions
in practice and are widely used in academia and industry to
solve non-convex problems. In this paper, a set of analytic test
functions and transformations are presented that can be used to
quantify the expected performance of optimization algorithms on
difficult (non-convex) optimization problems. The test functions
and transformations in this set are used to compare and evaluate
the convergence rates of stochastic gradient descent, L-BFGS,
AdaGrad, and Adam.

I. INTRODUCTION

Convex optimization techniques such as stochastic gradient
descent (SGD), Newton’s method, and their variants are widely
used in machine learning applications. Perhaps most notable
is the usage of convex optimization techniques for minimizing
neural network loss functions. Convex optimization is a well
studied field, with many theoretical and practical guarantees
on algorithm convergence when applied to convex objective
functions. Unfortunately, given the non-convex nature of most
loss landscapes, none of the standard theoretical analyses apply
in the context of neural network training.

Therefore in the context of neural network training, the
efficiency of optimization algorithms is measured empirically.
The common experiment-based analysis poses an issue for
designing effective optimization algorithms, since often the
only way to measure performance is by running the algorithms
on complex real world problems. Even then, an algorithm that
performs well on a handful of problems is not guaranteed
to perform well on other problems. While the authors of an
optimization algorithm may argue that their algorithm should
heuristically perform better given some class of neural network
loss functions, it is almost impossible to make any theoretical
guarantees.

To address this issue, this work presents a framework for
empirical analysis based on the optimization of four analytic
objective functions. This framework is applied to test four
well-known optimization algorithms. Each of the four ob-
jective functions in this paper has been carefully designed
to exhibit some property that contrasts with those of a nice
convex function. Based on literature and industry usage, the

1Doctoral candidate, Department of Computer Science, Virginia Poly-
technic Institute and State University, Blacksburg, Virginia 24060, USA
(tchlux at vt.edu, thchang at vt.edu)

four optimization algorithms considered here are SGD [1], L-
BFGS [2], [3], AdaGrad [4], and Adam [5]. It is our hope
that by empirically analyzing the convergence of optimization
algorithms on hand-crafted analytic objective functions, the ef-
fects of each design decision on convergence can be observed
and quantified. This work offers deeper theoretical insight into
how the choice of optimization algorithm can be effected by
the expected properties of the objective function landscape.

In the following paper, first the four optimization algorithms
of interest are introduced along with a summary of their con-
vergence properties on convex functions. Next, four analytic
objective functions are introduced that each have a specific ra-
tional and purpose for testing the expected convergence rate of
an optimization algorithm. Following the objective functions,
three meaningful transformations that can be used to tune
the difficulty of an optimization problem are presented. Next,
an experimental methodology is outlined and applied to the
chosen optimization algorithms. Finally, some experimental
results are visualized and interpreted.

II. ALGORITHMS

For this analysis, four convex optimization algorithms com-
monly used in machine learning are considered, specifically
these algorithms are applied to training neural networks. The
four algorithms are SGD, L-BFGS, AdaGrad, and Adam. A
summary of each algorithm along with theoretical convergence
guarantees on convex objective functions follows.

A. Stochastic Gradient Descent

SGD [1] is a slight modification to the classic gradient
descent algorithm:

x(k+1) = x(k) − α(k)∇f
(
x(k)

)
where x(k) denotes the kth iterate, α(k) denotes the kth step
size, and ∇f(x) denotes the gradient of f at the point x.
Gradient descent can be thought of as an iterative minimization
of the original function f based on its first-order Taylor
expansion:

f(x) ≈ f(x(k)) +∇f(x(k))Tx

subject to the constraint that ‖x(k+1) − x(k)‖ ≤
α(k)/‖f(x(k))‖.

The difference between SGD and the standard gradient
descent algorithm, is that SGD only assumes access to an
approximation g ≈ ∇f . In theory, the condition on the
approximation g is that for all x,

E[g(x)] = ∇f(x).978-1-7281-6861-6/20/$31.00 c©2020 IEEE

Because g is an approximation to ∇f , it is possible that
each g(x(k)) could actually be an ascent direction, making the
convergence of SGD non-monotone, even for strongly convex
functions. Because of these bad directions, for a fixed step
size α(k) = α, SGD only converges to within some problem
dependent radius of the true optimum x?, at which point the
convergence stalls. To achieve further convergence, the step
size must be decayed. In practice, α(k) is often held constant
for many iterations, then decayed by some factor τ ∈ (0, 1).

For a strongly convex function and a deterministic gradient,
SGD reduces to standard gradient descent and its convergence
is linear. I.e., given t iterations,

|f(x(k))− f(x?)| ≈ O
(
ct)
)

for some constant 0 < c < 1. If g is indeed a stochastic
estimate to ∇f , the convergence rate is reduced to O

(
1
t

)
. If

furthermore the objective function is only convex (as opposed
to strongly convex), this rate is further reduced to O

(
1√
t

)
.

B. L-BFGS

In general, quasi-Newton methods use an approximation to
the Hessian ∇2f to allow for bigger step sizes in directions
of low variance. For a perfect quadratic, this allows Newton
methods to jump straight to the minima; for strongly convex
functions, this accommodates poorly conditioned objective
functions by normalizing the sub-level sets of f . The classic
Newton update can be derived from a second-order Taylor
approximation to f , and is given by:

x(k+1) = x(k) −
(
∇2f(x(k))

)−1
∇f(x(k)).

The original Broyden-Fletcher-Goldfarb-Shanno algorithm
(BFGS) algorithm iteratively refines an approximation to the
Hessian matrix H(k) by applying Rank-1 matrix updates to
its current approximation, each of which satisfies the secant
condition:

H(k)
(
x(k) − x(k−1)

)
= ∇f(x(k))−∇f(x(k−1)).

Intuitively, this can be thought of as iteratively refining the
Hessian based on a planar fit to each observed gradient. The
Newton update is defined in terms of the inverse Hessian, but
BFGS avoids performing a matrix inversion by leveraging the
Rank-1 Sherman-Morrison-Woodbury matrix identity:

(H + xyT)−1 = H−1 −H−1x(I + vTH−1x)vTH−1

where xyT is a Rank-1 matrix, and I is the identity. By
leveraging this formula, BFGS is able to keep the iteration cost
computationally cheap, since the cost of the Rank-1 update is
significantly cheaper than the cost of matrix inversion.

L-BFGS [2], [3] is a slight modification to BFGS, which fur-
ther reduces iteration and storage costs for high-dimensional
problems. Instead of keeping track of the entire Hessian matrix
H , L-BFGS stores only the previous m update vectors (x and
y in the Woodbury matrix formula), then reconstructs each
H(k) in each iteration. If m = 1, then L-BFGS is reduced
to the secant method. If m = kmax (the max-iteration cost)

then L-BFGS is equivalent to BFGS, though the storage and
computational cost may be greater or lesser depending on
whether kmax is greater than or less than the dimension. For
a typical application, m is strictly less than the dimension,
making this a computationally efficient algorithm. As a useful
consequence, the memory limit ensures that L-BFGS can
accomodate non-constant Hessians.

For a strongly convex objective function, L-BFGS converges
superlinearly to the optimum x?. That is, L-BFGS is faster
than linear but slower than the quadratic convergence rate
O
(
cb

t
)

(where both c and b are positive numbers less than
one). When convexity assumptions are dropped, L-BFGS has
no convergence guarantees. In fact, in the presence of local
maxima and saddle-points, most quasi-Newton methods will
converge to both [6].

C. AdaGrad

AdaGrad [4] attempts to recreate the benefits of Newton’s
method without explicitly approximating the Hessian. To
achieve this, AdaGrad directly measures the variance in func-
tion value with respect to each basis direction. Specifically,
AdaGrad derives a variance matrix G that captures the same
approximate information as L-BFGS, but with much lower
cost since G is always diagonal given an orthonormal basis.
It should be noted that for a strongly convex function, the
Hessian ∇2f is always symmetric positive definite (SPD),
which immediately implies that it is columnwise diagonally
dominant. Therefore, for strongly convex functions, a diagonal
matrix G derived from variance information generally makes
a reasonable approximation to the true Hessian ∇2f .

The kth variance estimate for each dimension of G is given
by

G(k) = diag

√√√√ k∑

n=1

(g(n))2 + ε

where each g(n) is a previous gradient (estimate) and ε is an

error-correction factor, introduced to prevent G from becoming
singular in degenerate cases. Note that since G(k) is diagonal,
it can be readily inverted. Also, by storing

(
G(k)

)2 − εI
and performing the square root and error-accommodating
operations on demand, G can be iteratively refined without
tracking previous gradients. To normalize the sublevel sets and
improve the conditioning of f , a scaled version of G can be
directly plugged in for H in the quasi-Newton update:

x(k+1) = x(k) − α(k)(G(k))−1g(x(k))

where α(k) is a step size, and g is an approximation to ∇f in
the stochastic case and g = ∇f in the deterministic case. More
intuitively, AdaGrad can also be thought of as a trust region
method, where the variance estimate G allows for larger steps
in directions of low variance.

AdaGrad is guaranteed the same convergence as SGD, but
the constant terms that are ignored by the Big-O notation are
siginificantly better for AdaGrad when the problem is poorly
conditioned.

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Subquadratic Subquadratic derivative

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

−4

−2

0

2

4

Saddle Saddle derivative

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

−4

−2

0

2

4

Superquadratic Superquadratic derivative

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

−10

−5

0

5

10

Multimin Multimin derivative

Fig. 1. One dimensional visualizations of each of the four analytic objective functions with derivative adjacent to each function. These functions are designed
to be extended into many dimensions by repeating the same 1D function along each component.

D. Adam

Adam [5] combines the idea of variance estimation from
AdaGrad, with the idea of momentum. Intuitively, momentum
places some weight on previous iterates by replacing the
current gradient estimate g with a weighted average of g and
the previously seen gradients:

ĝ(k+1)(x(k)) = βg(x(k)) + (1− β)ĝ(k).

When g is a stochastic estimate, this has the effect of smooth-
ing over noise and avoiding wild oscillations. For poorly
conditioned problems, this prevents the iterates x(k) from
wildly oscillating about the optimum descent direction; for
non-convex functions, this can allow Adam to step through
sharp minima, which often correspond to poor generalization
error.

Leveraging the variance estimate G used by AdaGrad,
Adam applies momentum not only to the gradient (first mo-
ment) estimate, but also applies momentum to the variance
matrix G (second moment). Therefore, the Adam update can
be summarized by:

x(k+1) = x(k) − α
(√

β2g2(x(k)) + (1− β2)(G(k))2
)−1

·
(
β1g(x

(k)) + (1− β1)ĝ
)

where β1 and β2 are the first and second moment coefficients
respectively, and G(k) is the kth non-corrected variance esti-
mate from AdaGrad. Large momentum coefficients are most

helpful for noisy and poorly conditioned problems. However, if
the momentum coefficient is too large with respect to the step
size α, Adam can fail to converge. Most interesting problems
are noisy and poorly conditioned, and most algorithms tend
to converge well for any well-conditioned problem. So, it is
common practice to set β1 ≈ 1 and β2 ≈ 1, then choose the
largest convergent step size α.

Similarly to AdaGrad, Adam converges at the same rate
as SGD but with more favorable hidden constants when the
problem is poorly conditioned.

III. ANALYTIC OBJECTIVE FUNCTIONS

In order to empirically evaluate each optimization technique
in a generalizable way, four analytic functions for minimiza-
tion are presented. Each of these test functions has a single
global minimum and specially designed challenges for typical
convex optimization techniques.

A. Sub-quadratic

The sub-quadratic is a convex function that appears to come
to a sudden point at the global minimum. Many common
optimization algorithms will tend to overshoot this minimum
due to over stepping. The function is defined as follows

d∑
i=1

|xi|
2k

2k−1

0 100 200 300 400 500

0.1

0.2

0.3

0.4 SGD LBFGS ADAGRAD ADAM

Step

F
un

ct
io

n
V

al
ue

0 10k 20k 30k 40k 50k

0.1

0.2

0.3

0.4 SGD LBFGS ADAGRAD ADAM

Step

F
un

ct
io

n
V

al
ue

Fig. 2. Convergence results averaged over all objective functions, dimensions, amounts of noise, rotation, and skew. The thickest line in each series represents
the median, while the thin lines of the same style (and color) represent the 10th and 90th percentiles. The left figure depicts only the first 500 steps while the
right figure depicts all 50 thousand steps. Adam and SGD are the best performers beyond two thousand steps. L-BFGS performs best in the first 50 steps,
then remains second to Adam until SGD overtakes it at roughly two thousand steps.

where d is the dimension of the problem and k > 1. A one-
dimensional plot of the function and its derivative is shown in
Figure 1.

B. Super-quadratic

The super-quadratic function is a convex function used to
mimic a phenomenon observed in practice where the region
surrounding an optimal point has a gradient whose magnitude
goes to zero at a rapidly decreasing rate. Visually, this man-
ifests as a flattening surrounding the global minimum. The
function is defined as follows

d∑
i=1

x2ki

where d is the dimension of the problem and k > 1. A one-
dimensional plot of the function and its derivative is shown in
Figure 1.

C. Saddle

In problems with tens or more dimensions, the likelihood of
non-uniform curvature between dimensions becomes increas-
ingly likely. When dimensions have opposing curvature, saddle
points are created. Recent work [6] has shown that saddle
points are a very common occurrence when training neural
networks. Analytically we define the following function that
has exponentially more saddle points with growing dimension.

d∑
i=1

s4x2

2
− s2x4

2
+
x6

6
,

where d is the dimension of the problem and s is the constant
defining the absolute value of the location of saddle points
per-dimension. A one-dimensional plot of the function and its
derivative is shown in Figure 1.

D. Multimin

Many problems that require optimization have local minima.
Using Chebyshev polynomials, a function is constructed that

has a prescribed number of local minima whose occurrence
grows exponentially with increasing dimension.

d∑
i=1

[
1 + ax2i + f2m+1(xi)

]
,

f0(xi) = 1,

f1(xi) = xi,

fn+1(xi) = 2xifn(xi)− fn−1(xi),

Here, d is the dimension of the data, a is a multiplier for
determining the relative effect size of the quadratic term, and
m is the number of local minima per dimension. The number
of local minima in the space will grow as md. When m is
odd there will be one global minimum; this is recommended.
When m is even there will be 2d global minimizers. A one-
dimensional plot of the function and its derivative is shown in
Figure 1.

IV. FUNCTION TRANSFORMATIONS

Along with the four different objective functions, three ana-
lytic transformations are presented that allow for careful tuning
of both the type and the difficulty of challenges presented to
convex optimization techniques. These three transformations
are chosen to mimic common problems faced in real-world
applications.

A. Noise

The analytic functions that have been presented thus far all
have well-defined, with deterministic gradients almost every-
where. In most neural network training applications, a subset
of the total training data volume is used in each gradient evalu-
ation, resulting in a stochastic estimate of the true gradient. To
simulate this reality, various amounts of uniform random noise
are added to each gradient evaluation. SGD and other first
order methods (such as Adam and AdaGrad) are expected to
still converge under these conditions [1]. Though the analysis

0 10k 20k 30k 40k 50k

0.05

0.1

0.15

0.2

0.25

0.3

0.35

SGD LBFGS ADAGRAD ADAM
F

un
ct

io
n
 V

al
u
e Subquadratic Function

0 10k 20k 30k 40k 50k

0.02

0.03

0.04

0.05

Step

F
u
n
ct

io
n

V
al

u
e

Superquadratic Function

0 10k 20k 30k 40k 50k

0.1

0.2

0.3

0.4
SGD LBFGS ADAGRAD ADAM

F
un

ct
io

n
 V

al
u
e Saddle Function

0 10k 20k 30k 40k 50k

0.15

0.2

0.25

0.3

Step

F
u
n
ct

io
n

V
al

u
e

Multimin Function

Fig. 3. Convergence results broken up by function and averaged over all dimensions, amounts of noise, rotation, and skew. The thickest line in each series
represents the median, while the thin lines of the same style (and color) represent the 10th and 90th percentiles. Adam converges more quickly, but is overtaken
by SGD after tens of thousands of steps for the sub- and super-quadratic functions. Adam and L-BFGS perform best on the saddle objective, while SGD and
Adam perform best for the multi-minimum objective.

mentions no constraint on the variance of the noise, the
maximum magnitude of the uniform noise has been selectively
capped at 25% of the maximum magnitude of the gradient for
our evaluations. Let ‖g‖L∞ denote the maximum magnitude
of the gradient. For each objective function, optimizations are
attempted with no noise, uniform noise with 12.5% of ‖g‖L∞ ,
and uniform noise with 25% of ‖g‖L∞ . These three amounts
of noise are further referred to as 0 noise, .5 (12.5%) noise,
and 1 (25%) noise.

B. Skew

The condition number of the sub-level set C of a function f
is defined as the ratio between the maximum diameter Wmax

and the minimum diameter Wmin across C:

κ(C) =
Wmax

Wmin
.

For f convex, this is proportional to the conditioning of f as
an operator. Notice that the sublevel sets for all the presented
objective functions are approximately square. This means that
without modification, the problems are all well-conditioned,
i.e., κ(f) ≈ 1. To simulate poor problem conditioning,
which is common in machine learning applications, various
amounts of skew are introduced on f . For each objective
function, optimizations are attempted with no skew, an inverse
conditioning ratio of Wmin

Wmax
= 0.5, and an inverse conditioning

of Wmin

Wmax
= 0.01.

m k a s
Sub-quadratic N/A 2 N/A N/A

Super-quadratic N/A 2 N/A N/A
Saddle Point N/A N/A N/A 0.75

Mult-Min 3 N/A 2 N/a

Fig. 4. The constants that are used within each objective function. k is the
power multiplier used for the sub- and super-quadratic functions. m is the
number of minima per dimension in the multi-min objective. And s determines
the (positive and negative) locations at which the saddle function will have a
directional derivative of zero along each dimension.

C. Rotation

Finally note that each of the presented objective functions
is completely separable, in that it can be decomposed into
the sum of its components in each dimension, which can
be optimized separately. For Adam and AdaGrad, which use
diagonal matrices to capture variance in each basis dimension,
this means that all the necessarry information can be cap-
tured without need for off-diagonal elements. However, as the
functions are rotated to a maximum angle of π/8 radians, the
objective functions become non-separable, making Adam and
AdaGrad’s variance approximations poor proxies for the true
Hessian. To simulate non-separability, optimization algorithms
are applied to each objective function with no rotation, π/16
radian rotation (.5 rotation), and full π/8 degree rotation (1
rotation).

0 10k 20k 30k 40k 50k

0.05

0.1

0.15

SGD LBFGS ADAGRAD ADAM

F
un

ct
io

n
 V

al
u
e 0.0 Noise

0 10k 20k 30k 40k 50k

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F
un

ct
io

n
V

al
ue

0.5 Noise

0 10k 20k 30k 40k 50k

0.15

0.2

0.25

0.3

0.35

0.4

Step

F
un

ct
io

n
V

al
ue

1.0 Noise

Fig. 5. Convergence results broken up by noise and averaged over all
functions, dimensions, amounts of rotation, and skew. The thickest line in
each series represents the median, while the thin lines of the same style (and
color) represent the 10th and 90th percentiles. The introduction of any noise
slows the convergence of all algorithms while SGD becomes the best. Adam
is similar, but lacks the later convergence achieved by SGD.

V. IMPLEMENTATION AND DATA COLLECTION

All of the objective functions were implemented in Python,
and their gradients were generated using the Python automatic
differentiation tool autograd. The constants used for the
objective functions are presented in Figure 4.

The four optimization algorithms discussed have been coded
in Python. For all algorithms the hyperparameter settings
were based upon recommended settings in source papers,
specifically for β1, β2, τ , and ε, while the step size α was

0 10k 20k 30k 40k 50k

0.05

0.1

0.15

0.2

SGD LBFGS ADAGRAD ADAM

F
un

ct
io

n
 V

al
u
e

0.0 Skew

0 10k 20k 30k 40k 50k

0.05

0.1

0.15

0.2

F
un

ct
io

n
V

al
ue 0.5 Skew

0 10k 20k 30k 40k 50k

0.05

0.1

0.15

0.2

Step

F
un

ct
io

n
V

al
ue

0.99 Skew

Fig. 6. Convergence results broken up by skew and averaged over all
functions, dimensions, amounts of noise, and rotation. The thickest line in
each series represents the median, while the thin lines of the same style (and
color) represent the 10th and 90th percentiles. The existence of mild skew
causes L-BFGS to become the best technique, while large amounts of skew
and no skew both lend to Adam remaining the best.

α β1 β2 τ ε
SGD 0.1 – – 0.5 –

L-BFGS 0.99 – – – –
AdaGrad 0.01 – – – 10−6

Adam 0.01 0.9 0.99 – 10−8

Fig. 7. The hyperparameter settings used for each optimization algorithm.
The values chosen are those either recommended in the source paper, or
tuned lightly for this test set (in the case of α for SGD). The value of m
used for L-BFGS was chosen as the maximum of ten and the square root of
the dimension.

tuned for reasonable performance. The value of m used for L-
BFGS was chosen as the maximum of ten and the square root
of the dimension. Figure 7 shows the selected hyperparameter
values for each algorithm. For SGD, the decay factor τ was
applied after every five thousand iterations.

Each algorithm was run on each noise level, skew, and
rotation individually for all combinations of all objective
functions in dimensions 10, 100, and 1000. For each objective
function and each level of noise, skew, and rotation, 100
independent trials were run from (common) random starting
points uniformly distributed in the unit hypercube. The op-
timization algorithms were permitted 50 thousand objective
function evaluations. Note that each of the four objective
functions has a single global minimum where f(x) = 0, and
is upper bounded by f(x) = 1.

VI. RESULTS

The two overall best performers for the analytic objective
functions given varying noise, skew, and rotation were Adam
and SGD. Figure 2 shows the median objective value obtained
versus number of steps for each optimization algorithm over
all test functions and values for noise, skew, and rotation.

The results are broken up by function in Figure 3, where
multiple (expected) behaviors of each optimization algorithm
can be observed. For the sub- and super-quadratic functions,
the decreasing step size of SGD allows better tail convergence
than any other technique. Adam performs best on the saddle
function because its momentum and strictly positive second-
order estimate of objective function curvature allow it to
continue walking closer to the minimum without getting stuck
at a local plateau in the gradient. None of the optimization
algorithms are able to successfully minimize the saddle and
multi-min problems, as these are incredibly difficult in high
dimension.

Some unexpected and difficult-to-explain behaviors also
occur. It is unclear why SGD obtains better tail performance
than Adam on the multi-min problem. Perhaps the step size
becomes just the right size to step out of the local minima.

A. Convergence by Noise

In Figure 5, the effect of increased noise in the gradient of
the objective function is studied.

As expected, the addition of noise significantly slows
the convergence of all the algorithms for all the functions.

0 10k 20k 30k 40k 50k

0.05

0.1

0.15

SGD LBFGS ADAGRAD ADAM

F
un

ct
io

n
 V

al
u
e 0.0 Rotation

0 10k 20k 30k 40k 50k

0.05

0.1

0.15

F
un

ct
io

n
V

al
ue

0.5 Rotation

0 10k 20k 30k 40k 50k

0.05

0.1

0.15

Step

F
un

ct
io

n
V

al
ue 1.0 Rotation

Fig. 8. Convergence results broken up by rotation and averaged over all
functions, dimensions, amounts of noise, and skew. The thickest line in each
series represents the median, while the thin lines of the same style (and color)
represent the 10th and 90th percentiles. The incorporation of rotation has little
to no effect on the convergence for the evaluated optimization algorithms.

However, the addition of noise seems to allow SGD better
performance than Adam on average, especially for amounts of
noise that match the hyperparameters of SGD well (as appears
to be the case for a noise of 0.5).

B. Convergence by Skew

In Figure 6, the effect of increased skew (i.e., deteriorating
the conditioning) of the objective functions is studied.

Interestingly, SGD seems to be unaffected by skew. All of
Adam, AdaGrad, and L-BFGS are capable of compensating

for skew, so it is expected that their performance would not
be impacted by changing skew.

C. Convergence by Rotation

In Figure 8, the effect of increased rotation of the objective
functions (which corresponds to non-separability) is studied.
It was assumed that this could negatively impact Adam and
AdaGrad, but none of the algorithms are significantly affected.

VII. CONCLUSION

In this paper, a test set of analytic objective functions and
transformations were presented and used to analyze the con-
vergence of four common convex optimization algorithms. The
specific challenges posed by the analytic objective functions
and the associated transformations were constructed to match
expected behaviors of real-world problems. Empirical results
confirm common observations with regards to ADAM and
SGD being good choices for non-convex optimization. How-
ever, empirical results also suggest that an initial burst of 10 to

100 steps of L-BFGS may improve the early convergence of
optimization algorithms in practice. Further theoretical insight
and improved generalizability of results may be allowed by
continued usage of this analytic objective function test set or
ones like it.

REFERENCES

[1] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic
approximation approach to stochastic programming,” SIAM Journal on
optimization, vol. 19, no. 4, pp. 1574–1609, 2009.

[2] J. Nocedal, “Updating quasi-newton matrices with limited storage,”
Mathematics of computation, vol. 35, no. 151, pp. 773–782, 1980.

[3] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for
large scale optimization,” Mathematical programming, vol. 45, no. 1-3,
pp. 503–528, 1989.

[4] J. C. Duchi and Y. Singer, “Proximal and first-order methods for convex
optimization,” Interpretation, vol. 2, p. 2, 2013.

[5] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[6] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and
Y. Bengio, “Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization,” in Advances in neural information
processing systems, 2014, pp. 2933–2941.

