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Abstract Increases in the quantity of available data have allowed all fields
of science to generate more accurate models of multivariate phenomena. Re-
gression and interpolation become challenging when the dimension of data is
large, especially while maintaining tractable computational complexity. Re-
gression is a popular approach to solving approximation problems with high
dimension, however there are often advantages to interpolation. This paper
presents a novel and insightful error bound for (piecewise) linear interpolation
in arbitrary dimension and contrasts the performance of some interpolation
techniques with popular regression techniques. Empirical results demonstrate
the viability of interpolation for moderately high dimensional approximation
problems, and encourage broader application of interpolants to multivariate
approximation in science.

Keywords approximation · regression · interpolation · high dimension · error
bound

1 Introduction

Regression and interpolation are problems of considerable importance that find
applications across many fields of science. Pollution and air quality analysis
[19], energy consumption management [30], and student performance predic-
tion [16,33] are a few of many interdisciplinary applications of multivariate
regression for predictive analysis. As discussed later, these techniques can also
be applied to prediction problems related to forest fire risk assessment [15],
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Parkinson’s patient clinical evaluations [49], local rainfall and weather [51],
credit card transactions [43], and high performance computing (HPC) file in-
put/output (I/O) [34].

Regression and interpolation have a considerable theoretical base in one di-
mension [11]. Common techniques include Lagrangian interpolation, piecewise
linear interpolation, and more generally spline interpolation via B-splines [5].
Tensor products of B-splines [50] or other basis functions have an unfortunate
exponential scaling with increasing dimension. Exponential scaling prohibits
tensor products from being reasonably applied beyond three-dimensional data.
In order to address this dimensional scaling challenge, C. de Boor and others
proposed box splines [6], of which one of the approximation techniques in this
work is composed [35].

The theoretical foundation of low dimensional interpolation allows the con-
struction of strong error bounds that are lacking in high dimensional problems.
A large body of literature exists studying the construction and application of
sparse grids [8,12], which attempt to address the problem of dimensional scal-
ing. The sparse grid point sets combined with specific approximation functions
allow for the construction of interpolation error bounds as well as bounds on
total error for regressors by considering projections onto orthogonal polyno-
mials [39]. However, sparse grids are not studied here because their size still
grows quite fast with dimension (although less than exponentially) making
them not readily tractable for more than a few tens of dimensions and are
primarily used for problems that allow data points to be chosen. This work
extends some known results regarding the secant method [20] to construct a
uniform error bound for interpolants over arbitrary scattered data in any di-
mension. These error bounds evidence that interpolants are useful, considering
similar uniform bounds cannot be constructed for regressors in general [36].
The maximum complexity of an interpolant is bounded by the amount of data
available, while the maximum complexity of a regressor is bounded by both
the amount of data and the chosen parametric form. For this reason, generic
uniform bounds are largely unobtainable for regression techniques on arbitrary
approximation problems, even when the approximation domain is bounded.

Aside from theoretical motivation for the use of interpolants, there are often
computational advantages as well. Interpolants do not have the need for fitting
data, or minimizing error with respect to model parameters. In applications
where the amount of data is large and the relative number of predictions that
need to be made for a given collection of data is small, the direct application
of an interpolant is much less computationally expensive.

In this work, multivariate interpolation is defined given a closed convex
subset Y of a metrizable topological vector space with metric s, some function
f : Rd → Y and a set of points X =

{
x(1), . . ., x(n)

}
⊂ Rd, along with

associated function values f
(
x(i)
)
. The goal is to construct an approximation

f̂ : Rd → Y such that f̂
(
x(i)
)

= f
(
x(i)
)

for all i = 1, . . ., n. It is often the
case that the form of the true underlying function f is unknown, however it
is still desirable to construct an approximation f̂ with small approximation
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error at y /∈ X. The two metric spaces that will be discussed in this work
are the real numbers with metric s(x, y) = |x − y|, and the set of cumulative
distribution functions (CDFs) with the Kolmogorov-Smirnov (KS) statistic
[32] as a metric.

Multivariate regression is often used when the underlying function is pre-
sumed to be stochastic, or stochastic error is introduced in the evaluation of f .
Hence, multivariate regression relaxes the conditions of interpolation by choos-

ing parameters P defining f̂(x;P ) to minimize the error vector
(∣∣f̂(x(1);P )−

f
(
x(1)

)∣∣, . . ., ∣∣f̂(x(n);P ) − f(x(n))∣∣) in some norm. The difficult question in

the case of regression is often what parametric form to adopt for any given
application.

The most challenging problem when scaling in dimension is that the num-
ber of possible interactions between dimensions grows exponentially. Quantify-
ing all possible interactions becomes intractable, and hence problems beyond
ten to twenty dimensions usually rely on linear models. That is not to say
nonlinear models are absent, but nonlinearities are often either preconceived
or model interactions between small subsets of dimensions at most. Even glob-
ally nonlinear approximations such as neural networks are constructed from
compositions of summed low-interaction functions [14].

Provided the theoretical and practical motivations for exploring inter-
polants, the main objective of this work is to study the empirical performance
differences in both accuracy and computational expense between a set of in-
terpolation techniques and a set of common regression techniques. The main
contributions of this work are a sharp theoretical error bound for (piecewise)
linear interpolation in arbitrary dimension and multiple empirical comparisons
that illustrate potential advantages of interpolation.

The remainder of this paper is organized as follows. Sections 2 and 3 present
the multivariate models. Section 4 gives the error measuring methodology
that is used for collecting empirical results. Section 5 contains the theoretical
error bounds for interpolation as well as an analytic test for demonstration.
Section 6 presents the data sets for empirical approximation analysis and the
approximation results for all models on these data sets. Section 7 analyzes and
discusses the results, their implications, and their limitations. Finally, Section
8 concludes.

2 Multivariate Regression

Multivariate regressors are capable of accurately modeling a complex depen-
dence of a response (in Y ) on multiple variables (represented as a points in
Rd). The approximations to some (unknown) underlying function f : Rd → Y
are chosen to minimize some error measure related to data samples f

(
x(i)
)
. For

example, least squares regression uses the sum of squared differences between
modeled function values and true function values as an error measure. In this
section and the next, some techniques are limited to approximating real valued
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functions (Y ⊂ R). These techniques can be extended to real vector-valued
ranges by repeating the construction for each component of the vector output.
Throughout the following, x denotes a d-tuple, xi the ith component of x, and
x(i) the ith d-tuple data point. Different symbols are used to represent the
approximation function f̂ .

2.1 Multivariate Adaptive Regression Splines

This approximation was introduced in [22] and subsequently improved to its
current version in [23], called fast multivariate adaptive regression splines (Fast
MARS). In Fast MARS, a least squares fit model is iteratively built by begin-
ning with a single constant valued function and adding two new basis functions
at each iteration of the form

B2j−1(x) = Bl(x)
(
xi − x(p)i

)
+
,

B2j(x) = Bk(x)
(
xi − x(p)i

)
−,

where j ≤ m is the iteration number, m is the maximum number of underlying
basis functions, 1 ≤ p ≤ n, and Bl(x), Bk(x) are basis functions from the
previous iteration,

w+ =

{
w, w ≥ 0

0, w < 0
,

w− = (−w)+, and i, p, l, and k are chosen to produce the best fit to the
data with the addition of B2j−1 and B2j to the existing basis, among all pos-
sible choices of i, p, l, and k. After iteratively constructing a model, MARS
then iteratively removes basis functions that do not contribute to goodness of
fit. In effect, MARS creates a locally component-wise tensor product approx-
imation of the data. The overall computational complexity of Fast MARS is
O(ndm3). See the work of Friedman [23] for a more thorough description of
this approximation and its construction. This paper uses an implementation
of Fast MARS [45] with m = 200 throughout all experiments.

2.2 Support Vector Regressor

Support vector machines are a common method used in machine learning
classification tasks that can be adapted for the purpose of regression [3]. How
to build a support vector regressor (SVR) is beyond the scope of this summary,
but the resulting functional fit p : Rd → R has the form

p(x) =

n∑
i=1

aiK
(
x, x(i)

)
+ b,

where K is the selected kernel function, ai ∈ Rn, b ∈ R are coefficients to
be solved for simultaneously. The computational complexity of the SVR is
O(n2dm), withm being determined by the minimization convergence criterion.
This paper uses the scikit-learn SVR [42] with a radial basis function kernel.
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2.3 Multilayer Perceptron Regressor

The neural network is a well studied and widely used method for both re-
gression and classification tasks [27,46]. When using the rectified linear unit
(ReLU) activation function [18] and fitting the model with stochastic gradient
descent (SGD) or BFGS minimization techniques [25,37,44], the model built
by a multilayer perceptron uses layers l : Ri → Rj defined by

l(u) =
(
utWl + cl

)
+
,

where cl ∈ Rj and Wl is the i× j weight matrix for layer l. In this form, the
multilayer perceptron (MLP) produces a piecewise linear model of the input
data. The computational complexity of training a multilayer perceptron is
O(ndm), where m is determined by the sizes of the layers of the network and
the stopping criterion of the minimization used for finding weights. This paper
uses an MLP built from Keras and Tensorflow to perform regression [1,13]
with ten hidden layers each having thirty two nodes (a total of approximately
ten thousand parameters), ReLU activation, and one hundred thousand steps
of SGD for training. It should be noted that the choice of neural network
architecture affects approximation performance, but no architecture tuning is
performed here.

3 Multivariate Interpolation

The following interpolation techniques demonstrate a reasonable variety of
approaches to interpolation. All of the presented interpolants produce approx-
imations that are continuous in value, which is often a desirable property in
applied approximation problems.

3.1 Delaunay

The Delaunay triangulation is a well-studied geometric technique for produc-
ing an interpolant [31]. The Delaunay triangulation of a set of points into
simplices is such that there are no points inside the sphere defined by the ver-
tices of each simplex, visualized in Figure 1. For a d-simplex S with vertices
x(0), x(1), . . ., x(d), and function values f

(
x(i)
)
, i = 0, . . ., d, y ∈ S is a unique

convex combination of the vertices,

y =

d∑
i=0

wix
(i),

d∑
i=0

wi = 1, wi ≥ 0, i = 0, . . . , d,

and the Delaunay interpolant f̂(y) at y is given by

f̂(y) =

d∑
i=0

wif
(
x(i)
)
.
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Fig. 1 On the left above is a depiction of a Delaunay triangulation over four points, notice
that the circumball (shaded circle) for the left simplex does not contain the fourth point.
On the right above, a non-Delaunay mesh is depicted. Notice that the circumball for the
top simplex (shaded circle, clipped at bottom edge of the visual) contains the fourth point
which violates the Delaunay condition for a simplex.

The computational complexity of Delaunay interpolation (for the implemen-
tation used [10]) is O(knd3). Given pathological data the entire triangulation
could be computed with k = ndd/2e, but the average case yields k = d log d
and is capable of scaling reasonably to d ≤ 50. In the present application, a
Delaunay simplex S containing y is found, then the d + 1 vertices (points in
X) of S are used to assign weights to each vertex and produce the predicted
function value for point y.

3.2 Modified Shepard

The modified Shepard method used here (ShepMod) generates a continuous
approximation based on Euclidean distance and resembles a nearest neighbor
interpolant [17]. This model is a type of metric interpolation, also called a
Shepard method [26,47]. The interpolant has the form

p(x) =

n∑
k=1

Wk(x)f
(
x(k)

)
n∑

k=1

Wk(x)
,

where p
(
x(k)

)
= f

(
x(k)

)
, Wk(x) =

((
rk −

∥∥x − x(k)∥∥
2

)
+

/(
rk
∥∥x − x(k)∥∥

2

))2
for x 6= x(k), and rk ∈ R is the smallest radius such that at least d + 1
other points x(j), j 6= k, are inside the closed Euclidean ball of radius rk
about x(k). The interpolant p(x) is continuous because the singularities at
the x(k) are removable. The weight function is visualized in Figure 2. The
computational complexity of ShepMod is O(n2d). This paper uses a Fortran
95 implementation of ShepMod derived from SHEPPACK [48].
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Fig. 2 On the left above is a depiction of the radius of influence for three chosen points
of a collection in two dimensions using the modified Shepard criteria. On the right a
third axis shows the relative weight for the center most interpolation point x(i) with the
solid line representing its radius of influence, where Wi(x) is 0 for ‖x − x(i)‖2 ≥ ri and
Wi(x)/

∑n
k=1Wk(x)→ 1 as x→ x(i).

3.3 Linear Shepard

The linear Shepard method (LSHEP) is a blending function using local lin-
ear interpolants, a special case of the general Shepard algorithm [48]. The
interpolant has the form

p(x) =

n∑
k=1

Wk(x)Pk(x)

n∑
k=1

Wk(x)
,

where Wk(x) is the same as for the modified Shepard method and Pk(x) is
a local linear approximation to the data satisfying Pk

(
x(k)

)
= f

(
x(x)

)
. The

computational complexity of LSHEP is O(n2d3). This paper uses the Fortran
95 implementation of LSHEP in SHEPPACK [48].

3.4 Box Splines

The box spline model used here is an interpolation technique built from over-
lapping box splines [6]. The box splines serve as basis functions that are shifted
and scaled to have support over box shaped regions. The boxes are constructed
in a way to guarantee a covering of the domain [35]. Given a set of box splines{
bx

(i)}
with the iterative box properties outlined in [35] and anchored at in-

terior points
{
x(i)
}

,

f̂(y) =

n∑
i=1

bx
(i)

(y)f
(
x(i)
)

n∑
i=1

bx(i)(y)
.

Note that the box splines always satisfy bx
(i)(

x(j)
)

= δij and bx
(i)

(y) ≥ 0. The
computational complexity of interpolation via the box spline model is O(n2d).
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Fig. 3 Above is a depiction of the Voronoi cell boundaries (dashed lines) about a set
of interpolation points (dots) in two dimensions. In this example, the Voronoi model basis
function about the center most point has nonzero weight in the shaded region and transitions
from a value of one at the point to zero at the boundary of the twice expanded Voronoi cell
(solid line).

3.5 Voronoi

The nearest neighbor algorithm [17] is a well-studied technique for classifica-
tion and approximation. Nearest neighbor inherently utilizes the convex region

Cx(i)

(Voronoi cell [21]) consisting of all points closer to x(i) than to any other
point x(j). The Voronoi model smooths the nearest neighbor approximation
by utilizing the Voronoi cells (visualized in Figure 3) to define support via a
generic basis function v : Rd → R+ given by

vx
(i)

(y) =

(
1−

∥∥y − x(i)∥∥
2

2 h
(
y − x(i) | x(i)

))
+

,

where h
(
w | x(i)

)
is the distance between x(i) and the boundary of the Voronoi

cell Cx(i)

in the direction w. vx
(i)(

x(j)
)

= δij and vx
(i)

has local support, giving
the interpolated value

f(y) =

n∑
i=1

vx
(i)

(y)f
(
x(i)
)

n∑
i=1

vx(i)(y)
,

where 0 ≤ vx
(i)

(y) ≤ 1. The computational complexity of interpolation via
this Voronoi model is O(n2d). All of the approximations are an interpolant
involving a convex combination of known function values f

(
x(i)
)
.

4 Measuring Error

When the range of an approximation is the real numbers, error is reported
with summary statistics including: min absolute error, max absolute error,
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Fig. 4 In this HPC I/O example, the general methodology for predicting a CDF and
evaluating error can be seen, where M means ×106. The Delaunay method chose three source
distributions (dotted lines) and assigned weights {.1, .3, .6} (top to bottom at middle). The
weighted sum of the three known CDFs produces the predicted CDF (dashed line). The
KS Statistic (vertical line) computed between the true CDF (solid line) and predicted CDF
(dashed line) is 0.2 for this example. For this example the KS test null hypothesis is rejected
at p-value threshold 0.01, however it is not rejected at p-value threshold 0.001.

and absolute error quartiles. When the range of an approximation is the space
of cumulative distribution functions, the Kolmogorov-Smirnov statistic (max-
norm difference between the functions) is used.

A hurdle when modeling function-valued outputs such as cumulative distri-
bution functions (CDFs) or probability density functions (PDFs) is that cer-
tain properties must be maintained. It is necessary that a PDF f : R→ R have
the properties f(x) ≥ 0 and

∫∞
−∞ f(x)dx = 1. Instead, for a CDF F : R → R

the properties are F (x) ∈ [0, 1] and F (x) is absolutely continuous and nonde-
creasing. This work utilizes the fact that a convex combination of CDFs (or
PDFs) results in a valid CDF (or PDF). Given G(x) =

∑
i wiFi(x),

∑
i wi = 1,

wi ≥ 0, and each Fi is a valid CDF, G must also be a valid CDF. A demon-
stration of how this is applied can be seen in Figure 4.

The performance of approximation techniques that predict probability func-
tions can be analyzed through a variety of summary statistics. This work uses
the max absolute difference, also known as the Kolmogorov-Smirnov (KS)
statistic [32] for its compatibility with the KS test.

The two-sample KS test is a useful nonparametric test for comparing two
empirical CDFs while only assuming stationarity, finite mean, and finite vari-
ance. The null hypothesis (that two empirical CDFs come from the same
underlying distribution) is rejected at level p ∈ [0, 1] when

KS >

√
−1

2
ln

(
p

2

)√
1

n1
+

1

n2
,

with distribution sample sizes n1, n2 ∈ N (not the number of approximation
points). For all applications of the KS test presented in this work n1 = n2.



10 Thomas C. H. Lux et al.

An example of the process of generating predicted distributions from known
distributions and the subsequent calculation of error can be seen in Figure 4.
In this example the KS test null hypothesis is rejected at p-value threshold
0.01, however it is not rejected at p-value threshold 0.001. A brief listing of rel-
evant statistical terms used throughout this work is provided in the Appendix
(Section A).

5 Theoretical Error Bound

This section presents the theoretical results bounding the error of (piecewise)
linear interpolation. The error analysis relies on linear interpolation for three
reasons: (1) second order results can be obtained utilizing a Lipschitz constant
on the gradient of a function, rather than standard Lipschitz bounds; (2) the
results directly apply to Delaunay interpolation; and (3) multiple other inter-
polants in this paper compute predictions as convex combinations of observed
function values, which may allow for straightforward extensions of this error
bound.

Lemma 1 Let S ⊂ Rd be open and convex, f : S → R, and let ∇f(x) be
γ-Lipschitz continuous in the 2-norm. Then for all x, y ∈ S∣∣f(y)− f(x)− 〈∇f(x), y − x〉

∣∣ ≤ γ‖y − x‖22
2

.

Proof. Consider the function g(t) = f
(
(1 − t)x + ty

)
, 0 ≤ t ≤ 1, whose

derivative g′(t) =
〈
∇f
(
(1− t)x+ ty

)
, y − x

〉
is the directional derivative of f

in the direction (y − x).∣∣f(y)− f(x)− 〈∇f(x), y − x〉
∣∣ =

∣∣g(1)− g(0)− g′(0)
∣∣

=

∣∣∣∣ ∫ 1

0

g′(t)− g′(0) dt

∣∣∣∣ ≤ ∫ 1

0

∣∣g′(t)− g′(0)
∣∣ dt

=

∫ 1

0

∣∣∣∣〈∇f((1− t)x+ ty
)
−∇f(x), y − x

〉∣∣∣∣ dt
≤
∫ 1

0

∥∥∇f((1− t)x+ ty
)
−∇f(x)

∥∥
2
‖y − x‖2 dt

≤
∫ 1

0

(
γ ‖y − x‖2

) (
‖y − x‖2

)
t dt =

γ‖y − x‖22
2

.

ut

Lemma 2 Let x, y, vi ∈ Rd, ci ∈ R, and |〈y − x, vi〉| ≤ ci for i = 1, . . ., d. If
M = (v1, . . ., vd) is nonsingular, then

‖y − x‖22 ≤
1

σ2
d

d∑
i=1

c2i ,
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where σd is the smallest singular value of M.

Proof. Using the facts that M and M t have the same singular values, and
‖M tw‖2 ≥ σd‖w‖2, gives

‖y − x‖22 ≤
‖M t(y − x)‖22

σ2
d

=
1

σ2
d

d∑
i=1

〈y − x, vi〉2

≤ 1

σ2
d

d∑
i=1

c2i .

ut

Lemma 3 Given f , γ, S as in Lemma 1, let X = {x0, x1, . . ., xd} ⊂ S be

the vertices of a d-simplex, and let f̂(x) = 〈c, x − x0〉 + f(x0), c ∈ Rd be the
linear function interpolating f on X. Let σd be the smallest singular value of
the matrix M = (x1 − x0, . . ., xd − x0), and k = max

1 ≤ j ≤ d
‖xj − x0‖2. Then

∥∥∇f(x0)− c
∥∥
2
≤
√
d γk2

2σd
.

Proof. Consider g(t) = f(x(t)) − f̂(x(t)) along the line segment x(t) = (1 −
t)x0 + txj , 0 ≤ t ≤ 1, from x0 to xj . Observe that g(0) = f(x0) − f̂(x0) = 0,

g(1) = f(xj) − f̂(xj) = 0, and g′(t) is γg-Lipschitz continuous with γg =
γ‖xj − x0‖22. The following is visualized in Figure 5.

Suppose g′(0) > γg/2. Then |g′(0) − g′(t)| ≤ γgt =⇒ g′(0) − γgt ≤ g′(t),
and the line w = g′(0)− γgt intersects the t-axis at t̃ = g′(0)/γg > 1/2. t̃ < 1
necessarily, since by Rolle’s Theorem there exists 0 < z < 1 such that g′(z) = 0
and so g′(0)− γgz ≤ g′(z) = 0. Now by integrating

g′(0)2

2γg
=
g′(0)t̃

2
=

∫ t̃

0

(g′(0)− γgt)dt ≤
∫ t̃

0

g′(t)dt = g(t̃),

and using g′(0) > γg/2

−g′(0)2

2γg
< g′(0)− g′(0)2

2γg
− γg/2 =

(1− t̃)(g′(0)− γg)

2
=

∫ 1

t̃

(g′(0)− γgt)dt

≤
∫ 1

t̃

g′(t)dt = −g(t̃),

a contradiction for the value of g(t̃). A similar contradiction arises for g′(0) <
−γg/2. Therefore |g′(0)| ≤ γg/2. In terms of f ,∣∣〈∇f(x0)− c, xj − x0〉

∣∣ = |g′(0)| ≤ γ‖xj − x0‖22/2 ≤ γk2/2,



12 Thomas C. H. Lux et al.

0 0.5 1
-!g / 2

0

!g / 2

0 0.5 1 0 0.5 1

g'(t)
g(t)

 w 

 t  ~ 

g'(t)

g(t)

 w 

 t  ~ 

g'(t)

g(t)

 w 

 t  ~ 

Fig. 5 Three different scenarios visualizing Lemma 3, where g(t) is the difference between a
piecewise linear interpolant and the approximated function along a normalized line segment
between interpolation points, g′(t) is γg-Lipschitz continuous, and w and t̃ are defined in
the proof. Leftmost is a randomly chosen permissible shape of g and g′. The middle is the
only possible shape of g and g′ given g′(0) = γg/2, establishing the case of equality in the
lemma. Rightmost is the resulting contradiction when g′(0) > γg/2, notice it is impossible
to ensure g′(t) is γg-Lipschitz continuous and satisfy g(1) = 0 (highlighted with red circle
on the right).

which holds for all 1 ≤ j ≤ d. Finally, using Lemma 2,

‖∇f(x0)− c‖22 ≤
d

σ2
d

(γk2/2)2 =⇒ ‖∇f(x0)− c‖2 ≤
√
d γk2

2σd
.

ut

Theorem Under the assumptions of Lemma 1 and Lemma 3, for z ∈ S,

∣∣f(z)− f̂(z)
∣∣ ≤ γ‖z − x0‖22

2
+

√
d γk2

2σd
‖z − x0‖2.

Proof. Let v = ∇f(x0)− c, where ‖v‖2 ≤
√
d γk2/(2σd) by Lemma 3. Now∣∣f(z)− f̂(z)

∣∣ =
∣∣f(z)− f(x0)− 〈c, z − x0〉

∣∣
=
∣∣f(z)− f(x0)− 〈∇f(x0)− v, z − x0〉

∣∣
=
∣∣f(z)− f(x0)− 〈∇f(x0), z − x0〉+ 〈v, z − x0〉

∣∣
≤
∣∣f(z)− f(x0)− 〈∇f(x0), z − x0〉

∣∣+
∣∣〈v, z − x0〉∣∣

≤
∣∣f(z)− f(x0)− 〈∇f(x0), z − x0〉

∣∣+ ‖v‖2‖z − x0‖2
≤
∣∣f(z)− f(x0)− 〈∇f(x0), z − x0〉

∣∣+
(√
d γk2/(2σd)

)
‖z − x0‖2

≤ γ‖z − x0‖22
2

+

√
d γk2

2σd
‖z − x0‖2,

where the last inequality follows from Lemma 1. ut

In summary, the approximation error of a linear (simplicial) interpolant
tends quadratically towards zero when approaching observed data only when
the diameter of the simplex is also reduced at a proportional rate. Only linear
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convergence to the true function is achieved in practice without the incor-
poration of additional observations, by moving closer to interpolation points.
Notice that the approximation error is largely determined by the spacing of ob-
served data. Predictions made by simplices whose vertices are not well-spaced
(i.e., have large diameter, or are nearly contained in a hyperplane) have higher
error.

The fact that the theoretical error bound is sharp can be observed with
the test function q(x) = ‖x‖22, x ∈ Rd, and the simplex defined by vertices
X = {0, e1, . . . , ed}, where ei is the i-th standard basis vector in Rd, e = (1,
. . ., 1) ∈ Rd, and 0 denotes the zero vector in any dimension. The constants
relevant to the error bound are

γ = 2, σd = 1, k = 1, x0 = 0, q̂(x) = 〈e, x− 0〉+ q(0).

Noting that q(0) = 0, the approximation error at z = −(1/2)e is∣∣q(z)− q̂(z)∣∣ =
∣∣‖z‖22 − 〈e, z〉∣∣ =

∣∣d/4 + d/2
∣∣ = 3d/4,

while the error bound from the theorem gives

∣∣q(z)− q̂(z)∣∣ ≤ γ‖z − x0‖22
2

+

√
d γk

2σd
‖z − x0‖2

= ‖z‖22 +
√
d‖z‖2

= d/4 + d/2 = 3d/4.

Acknowledging that the error bound is sharp, it may be of interest to observe
the error of piecewise linear approximation techniques on an analytic test
function.

5.1 Demonstration on an Analytic Test Function

The theoretical results constructed in Section 5 for (piecewise) linear interpola-
tion are promising and apply directly to Delaunay interpolation, however they
are difficult to interpret in context with approximation algorithms that do not
have similar known uniform error bounds. For that reason, an analytic function
is used to measure the error of a piecewise linear interpolant (Delaunay) and
a piecewise linear regressor (the MLP) when provided an increasing amount
of data with varying levels of random noise. Only Delaunay and the MLP are
considered in this demonstration because all other mentioned techniques are
not strictly piecewise linear approximations.

The test function chosen here for analysis resembles the oscillatory function
used by [2]. However, a slight modification is made to remove the simple dot
product structure (which is favorable for the MLP). Let f(x) = cos(‖x‖2) for
x ∈ Rd where d is either 2 (Fig. 6) or 20 (Fig. 7). This function has a bounded
change in gradient 2-norm and hence meets the necessary Lipschitz condition
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Fig. 6 Delaunay and MLP approximations are constructed from Fekete points over the
unit cube evaluating the test function f(x) = cos(‖x‖2) for x ∈ R2. The figure shows the
first/third quartiles at the box bottom/top, the second quartile (median) at the white bar,
median 95% confidence interval (cones, barely visible in figure), and whiskers at 3/2 of
the adjacent interquartile ranges, for the absolute prediction error for each model at 1000
random evaluation points. The left plot observes a perfect interpolation problem with exact
evaluations of f. The right plot observes a regression problem with uniform random noise
giving values in [.9f(x), 1.1f(x)] for each x. Both axes are log scaled.
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Fig. 7 Delaunay and MLP approximations are constructed from Fekete points over the unit
cube evaluating the test function f(x) = cos(‖x‖2) for x ∈ R20. The details are the same as
for Fig. 6.
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for the error bound. Data points and approximation points for this test will
be within the unit cube [0, 1]d.

The error of a linear interpolant constructed from well spaced points is
dominated by the distance to the nearest data point. In order to uniformly
decrease the distance to the nearest data point across the unit cube, expo-
nentially more data points must be available for approximation. For this ex-
periment N = 2(4i), i = 1, . . . , 6, chosen points are kept well spaced by
computing approximate Fekete points. The following experiment was also run
with a Latin hypercube design [41], which produced almost identical results
that are not reported here. Fekete points have a history in potential theory
[29] and are most generally defined as those points that maximize the absolute
value of a Vandermonde determinant. Here, the QR method outlined in [7] is
used to identify approximate Fekete points from a Vandermonde matrix. A
multivariate polynomial basis of size 2N is constructed containing all polyno-
mials of degree ≤ n for the largest n such that

(
d+n
n

)
≤ 2N and 2N −

(
d+n
n

)
arbitrarily selected polynomials of degree n+ 1. The Vandermonde matrix for
these 2N polynomials is used to select N approximate Fekete points.

Finally an additional aspect is added to this test problem by incorporating
random uniform noise into the evaluations of f. For each test two experiments
are executed, one with exact function evaluations (an interpolation problem)
and one with a constant signal-to-noise ratio (SNR) of 10:1 (a regression prob-
lem).

The bound from the theorem suggests that by increasing the number of
well-spaced data points, approximation error can be reliably decreased. The
d = 2 test seen on the left half of Figure 6 shows a consistent decrease in
error for Delaunay and also shows the eventual accuracy plateau obtained
by a parametric regression form (the MLP, at roughly 500 points). On the
right hand side of Figure 6 the random noise clearly prohibits Delaunay from
converging to f , while the MLP is able to improve its approximation with more
data points on average. The convergence result for a very low-dimensional
problem like this is expected. However, intuition fails for higher dimensional
problems.

Figure 7 shows the test function with d = 20 presents a significantly more
challenging approximation problem than its counterpart in low dimension. The
same increase in number of data points from 32 to 8192 causes no apparent
improvement in approximation for either the noise-free or the noisy problems.
Perhaps unexpectedly, the interpolation technique performs better than the
regression technique on the noisy data (right) in Figure 7, and worse than the
regression technique on the noise-free data (left). This result emphasizes the
relevance of interpolation for problems in high dimension. It also reveals that
the outcome of MLP regressions can get worse when adding more data points.

The results achieved for both d = 2 and d = 20 align with the theoretical
error bound as can be seen in Figure 8. In low dimension, thousands of data
points meaningfully reduce the sparsity of the approximation problem. How-
ever, in higher dimension it takes many more points to achieve a reduction
in data sparsity while simultaneously being more difficult to produce well-
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Fig. 8 The distribution of absolute error, distance to the nearest data point, smallest
singular value (SV) and the longest edge of the simplex containing each approximation
point in the tests from Fig. 6 and Fig. 7 for Delaunay. In two dimensions it can be seen
that ‖z − x0‖2, σd, and k all shrink at the same rate for well-spaced approximation points,
resulting in a faster rate of decrease for approximation error. Notice that in higher dimension
the data remains sparse even with thousands of data points, and the decay in data spacing
is more prominant. The relatively small reduction in k along with the decrease in σd explain
the minimal reduction in error seen by Delaunay in Fig. 7.

conditioned simplices. This evidences the inherent challenge of data sparsity
in high dimension approximation problems. The analytic results presented are
not caused by the chosen test function, but rather the exponential increase in
complexity that accompanies increased dimension.

In summary, the regime of signal-to-noise ratios that result in competitively
accurate interpolants is greater for moderate to high dimensional problems due
to increased sparsity. Acknowledging the viability of interpolation for problems
of moderate dimension, the next section will consider real-world problems of
similar proportion (thousands of examples in tens of dimensions).

6 Data and Empirical Analysis

This section extends the comparison of interpolation and regression algorithms
to a sample of real-world problems. Five different data sets of varying dimen-
sion and application are utilized to construct approximations and compare
the accuracy of different techniques. The main goal is to demonstrate the vi-
ability of interpolants for real-world approximation problems and hence only
real-world data sets (none that are synthetic) are utilized in this comparison.

In the following five subsections the sources and targets of each test data set
are described, as well as challenges and limitations related to approximating
these data. The distribution of response values being modeled is presented
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followed by the distribution of approximation errors for each algorithm. The
plots for all five data sets have the same format.

All five data sets are rescaled such that the domain of approximation is
the unit hypercube. The range of the first four data sets is the real numbers,
while the range of the fifth data set is the space of cumulative distribution
functions. All approximation techniques are applied to the first four data sets,
while only those interpolants whose approximations are convex combinations
of observed data are applied to the final data set.

All approximations are constructed using k-fold cross validation as de-
scribed in [28] with k = 10. This approach randomly partitions data into k
(nearly) equal sized sets. Each algorithm is then evaluated by constructing an
approximation over each unique union of k−1 elements of the partition, mak-
ing predictions for points in the remaining element. As a result, each observed
data point is used in the construction of k− 1 different approximations and is
approximated exactly once. The k-fold cross validation method is data-efficient
and provides an unbiased estimate of the expected prediction error [28], how-
ever it should be noted that neither this method nor others can provide a
universally unbiased estimator for the variance of prediction error [4].

In addition to the figures displaying approximation results for each data
set, scatter plots of predicted versus actual values and tables of accompany-
ing numerical results including timings and quartiles of prediction error are
located in the Appendix (Section A). All of the test data sets capture under-
lying functions that are almost certainly stochastic. As described in Section 1,
regression techniques appear most appropriate for these problems. However,
typically data grows exponentially more sparse with increasing dimension.
Given that sparse data regressors tend towards interpolation and, as demon-
strated in Section 5.1, interpolants produce similar (if not identical) results, it
is presumed that interpolants are equally viable approximation techniques on
these problems.

6.1 Forest Fire (n = 504, d = 12)

The forest fire data set [15] describes the area of Montesinho park burned over
months of the year along with environmental conditions. The twelve dimen-
sions being used to model burn area are the x and y spatial coordinates of
burns in the park, month of year (mapped to x, y coordinates on a unit circle),
the FFMC, DMC, DC, and ISI indices (see source for details), the tempera-
ture, relative humidity, wind speed, and outdoor rain. The original analysis of
this data set demonstrated it to be difficult to model, likely due to the skew
in response values.

As suggested by Figure 10, the SVR has the lowest absolute prediction
errors for 80% of the data, with MLP and Delaunay being the nearest overall
competitors. The effectiveness of SVR on this data suggests the underlying
function can be defined by relatively few parameters, as well as the importance
of capturing the low-burn-area data points.



18 Thomas C. H. Lux et al.

0.1 5 100
0

5

10

15

20

Forest Fire Area Burned

C
o
u

n
t

Fig. 9 Histogram of forest fire area burned under recorded weather conditions. The data
is presented on a ln scale because most values are small with exponentially fewer fires on
record that burn large areas.
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Fig. 10 All models are applied to approximate the amount of area that would be burned
given environment conditions. 10-fold cross validation as described in the beginning of Sec-
tion 6 is used to evaluated each algorithm. This results in exactly one prediction from each
algorithm for each data point. These boxes depict the median (middle bar), median 95% con-
fidence interval (cones), quartiles (box edges), fences at 3/2 interquartile range (whiskers),
and outliers (dots) of absolute prediction error for each model. Similar to Figure 9, the errors
are presented on a ln scale. The numerical data corresponding to this figure is provided in
Table 3 in the Appendix.

6.2 Parkinson’s Telemonitoring (n = 5875, d = 19)

The second data set for evaluation [49] is derived from a speech monitoring
study with the intent to automatically estimate Parkinson’s disease symptom
development in Parkinson’s patients. The function to be approximated is a
time-consuming clinical evaluation measure referred to as the UPDRS score.
The total UPDRS score given by a clinical evaluation is estimated through
19 real numbers generated from biomedical voice measures of in-home sound
recordings.

Figure 12 shows the ShepMod algorithm has the lowest minimum, first
quartile, and median of absolute errors for this problem, while providing the
best prediction 66% of the time. The MLP has the lowest third quartile and
provides the best prediction for 32% of approximations. The dominance of
ShepMod may be due in part to regular-interval total UPDRS scores provided
by clinicians, favoring a nearest-neighbor strategy of prediction.
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Fig. 11 Histogram of the Parkinson’s patient total UPDRS clinical scores that will be
approximated by each algorithm.
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Fig. 12 All models are applied to approximate the total UPDRS score given audio features
from patients’ home life, using 10-fold cross validation. These boxes depict the median
(middle bar), median 95% confidence interval (cones), quartiles (box edges), fences at 3/2
interquartile range (whiskers), and outliers (dots) of absolute prediction error for each model.
The numerical data corresponding to this figure is provided in Table 5 in the Appendix.

6.3 Australian Daily Rainfall Volume (n = 2609, d = 23)

The third data set for the total daily rainfall in Sydney, Australia [51] provides
a slightly higher dimensional challenge for the interpolants and regressors.
This data is composed of many meteorological readings from the region in
a day including: min and max temperatures, sunshine, wind speed directions
(converted to coordinates on a circle), wind speeds, and humidities throughout
the day, day of the year (converted to coordinates on a circle), and the model
must predict the amount of rainfall tomorrow.

While Figure 13 makes MARS look far better than other techniques, it
only provides the best prediction for 11% of points. The MLP has the lowest
absolute error for 56% of points and LSHEP is best for 28%. MARS likely
achieves such a low first quartile due to the high occurrence of the value zero
in the data.
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Fig. 13 Histogram of daily rainfall in Sydney, Australia, presented on a ln scale because
the frequency of larger amounts of rainfall is significantly less. There is a peak in occurrence
of the value 0, which has a notable effect on the resulting model performance.
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Fig. 14 All models are applied to approximate the amount of rainfall expected on the
next calendar day given various sources of local meteorological data, using 10-fold cross
validation. These boxes depict the median (middle bar), median 95% confidence interval
(cones), quartiles (box edges), fences at 3/2 interquartile range (whiskers), and outliers
(dots) of absolute prediction error for each model. The errors are presented on a ln scale,
mimicking the presentation in Figure 13. The numerical data corresponding to this figure is
provided in Table 7 in the Appendix.

6.4 Credit Card Transaction Amount (n = 5562, d = 28)

The fourth test data set, and the final with a real-valued range, is a collection
of credit card transactions [43]. The provided data carries no direct real-world
meaning, being the output of a principle component analysis on the original
hidden source data. This obfuscation is done to protect the information of the
credit card users. This data has the largest dimension of all considered, at
28. A model for this data predicts the transaction amount given the vector of
principle component information.

As can be seen in Figure 16, the MLP outperforms all other algorithms at
the first, second, third, and fourth quartiles. The MLP produces the lowest
absolute error prediction for 80% of transactions, Delaunay bests the remaining
20%. It is likely that with less data, Delaunay would be the best performer.
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Fig. 15 Histogram of credit card transaction amounts, presented on a ln scale. The data
contains a notable frequency peak around $1 transactions. Fewer large purchases are made,
but some large purchases are in excess of five orders of magnitude greater than the smallest
purchases.

0.01 0.10 1 10 100 1000 104

BoxSplines

Voronoi

LSHEP

ShepMod

Delaunay

MLP

SVR

MARS

Transaction Amount Error

Fig. 16 All models are applied to approximate the expected transaction amount given
transformed (and obfuscated) vendor and customer-descriptive features, using 10-fold cross
validation. These boxes depict the median (middle bar), median 95% confidence interval
(cones), quartiles (box edges), fences at 3/2 interquartile range (whiskers), and outliers (dots)
of absolute prediction error for each model. The absolute errors in transaction amount pre-
dictions are presented on a ln scale, just as in Figure 15. The numerical data corresponding
to this figure is provided in Table 9 in the Appendix.

6.5 High Performance Computing I/O (n = 3016, d = 4)

The final of five data sets is derived from [9], which provides four-dimensional
distribution data by executing the IOzone benchmark [40] on a computer sys-
tem and varying the system’s file size, record size, thread count, and CPU
frequency. At each configuration, IOzone samples the I/O file-read through-
put (in bytes per second) 150 times. Empirical distribution function points
are computed from each set of 150 executions, which are interpolated with
a piecewise cubic Hermite interpolating polynomial [24] to approximate the
CDF. All interpolation algorithms with the exception of LSHEP are used to
approximate these CDFs from system configurations.

Delaunay achieves the lowest KS statistic (max norm difference) for 62% of
approximations, while Voronoi is best for the remaining 38%. Figure 18 shows
that while Delaunay may have more best predictions, the behavior of Voronoi
may be preferable.
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Fig. 17 Histogram of the raw throughput values recorded during all IOzone tests across all
system configurations. The distribution is skewed right, with few tests having significantly
higher throughput than most others. The data is presented on a ln scale.
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Fig. 18 The models directly capable of predicting distributions are applied to predicting
the expected CDF of I/O throughput at a previously unseen system configuration, using
10-fold cross validation. The KS statistic (max norm) between the observed distribution at
each system configuration and the predicted distribution is recorded and presented above.
Note that the above figure is not log-scaled like Figure 17. The numerical data corresponding
to this figure is provided in Table 11 in the Appendix.

p = .05 p = .01 p = .001 p = 10−6

Delaunay 50.3% 43 .5% 36 .2% 24 .7%

ShepMod 51 .4% 44.8% 38.1% 27.7%

Voronoi 52.6% 43.4% 34.4% 19.1%

BoxSplines 99.4% 98.5% 96.6% 89.3%

Table 1 Numerical counterpart of the histogram data presented in Figure 19. The columns
display the percent of null hypothesis rejections by the KS-test when provided different
selections of p-values for each algorithm. The algorithm with the lowest rejection rate at
each p is boldface, while the second lowest is italicized.

Figure 19 expands on the KS statistic results presented in Figure 18. Ag-
glomerate errors for each algorithm resemble a Gamma distribution. The per-
centages of significant prediction errors with varying p-values are on display
in Table 1. When considering the p = 0.001 results for each technique, a lit-
tle over one third of the predicted CDFs are significantly different from the
measured (and presumed) correct CDFs. However, it should be noted that
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Fig. 19 Histograms of the prediction error for each interpolant that produces predictions as
convex combinations of observed data, using 10-fold cross validation. The histograms show
the KS statistics for the predicted throughput distribution versus the actual throughput
distribution. The four vertical lines represent cutoff KS statistics given 150 samples for
commonly used p-values 0.05, 0.01, 0.001, 10−6, respectively. All predictions to the right
of a vertical line represent CDF predictions that are significantly different (by respective
p-value) from the actual distribution according to the KS test. The numerical counterpart
to this figure is presented in Table 1.

with 150 samples, the error of an empirical distribution function (EDF) can
reasonably be upwards of .1, which serves as a rough estimate for the lower
limit of achievable error. Globally, only a third of Voronoi predictions fail to
capture all of the characteristics of the CDFs at new system configurations.

7 Discussion

Table 2 summarizes results across the four test data sets with real-valued
ranges. The interpolants discussed in this paper produce the best approxima-
tions roughly one third of the time, and produce competitive approximations
for almost all data sets. These test problems are almost certainly stochastic
in nature, but the high dimension leads to greater data sparsity and model
construction cost, making interpolation more competitive.

The major advantages to interpolation lie in the near absence of fit time.
Delaunay, LSHEP, and ShepMod all require pairwise distance calculations, for
numerical robustness (Delaunay) and to determine the radii of influence for
data points (LSHEP and ShepMod). At least hundreds, and sometimes hun-
dreds of thousands of predictions can be made by the interpolants before the
most widely used regressor (MLP) finishes fitting these relatively small data
sets. However, the computational complexities of all interpolants presented
are greater than linear in either dimension or number of points, whereas the
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Algorithm Avg. % Best
Avg. Fit or

Prep. Time (s)
Avg. App. Time (s)

MARS 4.5 20.0s 0.001s
SVR 19 .5 0.5s 0.0001s
MLP 43.1 200.0s 0.001s

Delaunay 5.2 1.0s 1.0s
ShepMod 18.0 0.7s 0.0001s
LSHEP 8.4 2.0s 0.0001s
Voronoi 0.5 1.0s 0.04s

BoxSplines 3.5 0.8s 0 .0005 s

Table 2 This average of Appendix Tables 4, 6, 8, and 10 provides a gross summary of overall
results. The columns display (weighted equally by data set, not points) the average frequency
with which any algorithm provided the lowest absolute error approximation, the average time
to fit/prepare, and the average time required to approximate one point. The times have been
rounded to one significant digit, as reasonably large fluctuations may be observed due to
implementation hardware. Interpolants provide the lowest error approximation for nearly
one third of all data, while regressors occupy the other two thirds. This result is obtained
without any customized tuning or preprocessing to maximize the performance of any given
algorithm. In practice, tuning and preprocessing may have large effects on approximation
performance.

regressors’ nonlinear complexity in dimension generally comes from the model
fitting optimization.

The new theoretical results presented in Section 5 directly apply to De-
launay interpolation, however the performance of Delaunay does not appear
significantly better than other algorithms on these data sets. This observation
may be due to the stochastic nature of the data, but it also speaks to the power
of the approximations generated by the different interpolation methods. The
strong performance of other interpolants suggests that theoretical results sim-
ilar to those presented in this work can be achieved for the other interpolants
under reasonable assumptions.

Finally, most of the interpolants presented in this work benefit from the
ability to model any function over real d-tuples with a range that is closed
under convex combinations. In general, error can be quantified by any measure
(particularly of interest may be L2, L∞, etc.). The results of the distribution
prediction case study indicate that interpolants can effectively predict CDFs.
The error analysis for that work relies on the KS statistic, which captures
the worst part of any prediction and hence provides a conservatively large
estimate of approximation error. The average absolute errors in the predicted
CDFs are always lower than the KS statistics. However, the KS statistic was
chosen as a metric because of the important surrounding statistical theory. A
nonnegligible volume of predictions provide impressively low levels of average
absolute error in that final case study.

8 Conclusion

The major contributions of this work are: 1) new uniform theoretical error
bounds for piecewise linear interpolation in arbitrary dimension (Section 5);
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2) an empirical evaluation across real-world problems that demonstrates in-
terpolants produce competitively accurate models of multivariate phenomenon
when compared with common regressors for sparse, moderately high dimen-
sional problems (Section 6); and 3) a demonstration that some interpolants
generalize to interpolation in function spaces (Section 4), preserving mono-
tonicity (with CDFs, e.g.), neither of which common regressors can do.

The various interpolants discussed in this paper have been demonstrated
to effectively approximate multivariate phenomena up to 30 dimensions. The
underlying constructions are theoretically straightforward, interpretable, and
yield reasonably accurate predictions. Most of the interpolants’ computational
complexities make them particularly suitable for applications in even higher
dimension. The major benefits of interpolation are seen when only a small
number of approximations (≤ 1000) are made from data and when there are
relatively few data points for the dimension (for empirical results presented,
logd n ≤ 5). These findings encourage broader application of interpolants to
multivariate approximation in science.
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A Appendix

Statistical Terminology. A random variable X is precisely defined by its
cumulative distribution function (CDF) FX and the derivative of the CDF,
the probability density function (PDF) fX . For any possible value x of X, the
percentile of x is 100 FX(x), the percentage of values drawn from X that would
be less than or equal to x as the number of samples tends towards infinity. The
quartiles of X are its 25-th, 50-th (median), and 75-th percentiles. The abso-
lute difference between the median and an adjacent quartile is an interquartile
range. Given an independent and identically distributed sample from X and
presuming that X has finite mean and variance, a confidence interval can be
drawn about any percentile estimated from the sample. A confidence interval
describes the probability that a value lies within an interval. The null hypothe-
sis is a statement (derived from some test statistic) that the expected value of
the observed statistic is equal to an assumed population statistic. The p-value
of a given statistic value ρ for a given data set (sample from a distribution)
is the probability of observing a statistic at least as extreme as ρ for other
data sets (samples from that same distribution), assuming the null hypothesis
holds. The smaller the p-value, the stronger the statistical evidence is for re-
jecting the null hypothesis. For a more detailed introduction to statistics and
related terminology, see the work of Navidi [38].

Raw Numerical Results. The tables that follow show the precise experi-
mental results for all data sets presented in Section 6. The tests were all run
serially on an otherwise idle machine with a CentOS 6.10 operating system and
an Intel i7-3770 CPU operating at 3.4 GHz. The detailed performance results
in the tables that follow are very much dependent on the problem and the al-
gorithm implementation (e.g., some codes are TOMS software, some industry
distributions, and others are from conference paper venues). Different type-
face is used to show best performers, however not much significance should be
attached to ranking algorithms based on small time (millisecond) differences.
The results serve as a demonstration of conceptual validity.
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Fig. 20 Scatter plots for predicted versus actual values for the top three models on each
of the four real valued approximation problems. Top left is forest fire data, top right is
Parkinson’s data, bottom left is rainfall data, and bottom right is credit card transaction
data. Each approximation algorithm has a unique style and the top three algorithms are
listed in order of ranking in the legends. There are a large of number of 0-valued entries in
the forest fire and rainfall data sets that are not included in the visuals making the true
ranking of the models appear to disagree with the observed outcomes.
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Algorithm Min 25th 50th 75th Max
MARS 0.00984 3.11 7.01 11 .7 1090.0
SVR 0.0118 0.615 0.931 5.89 1090.0
MLP 0.0426 2.63 5.27 14.0 1090.0

Delaunay 0.0 1.98 5.37 13.1 1080 .0
ShepMod 0.0 1.93 6.27 16.0 1090.0
LSHEP 0.04 2.17 8.87 19.1 1070.0
Voronoi 0 .00982 3.65 7.56 15.6 1090.0

BoxSpline 0.0 1 .27 4 .61 12.6 1090.0

Table 3 This numerical data accompanies the visual provided in Figure 10. The columns of
absolute error percentiles correspond to the minimum, first quartile, median, third quartile,
and maximum absolute errors respectively. The minimum of each column is boldface, while
the second lowest value is italicized. All values are rounded to three significant digits.

Algorithm % Best Fit/Prep. Time (s) App. Time (s) Total App. Time (s)
MARS 7.3 29.1 0.00137 0.0686
SVR 78.0 0.00584 0 .0000620 0 .00310
MLP 0.0 32.8 0.000871 0.0436

Delaunay 0.2 0.0151 0.0234 1.18
ShepMod 2.0 0 .00634 0.0000644 0.00322
LSHEP 5.1 0.0275 0.0000463 0.00231
Voronoi 0.0 0.0152 0.000396 0.0198

BoxSpline 9 .7 0.00724 0.0000978 0.00489

Table 4 The left above shows how often each algorithm had the lowest absolute error
approximating forest fire data in Table 3. On the right columns are median fit time of 454
points, median time for one approximation, and median time approximating 50 points.

Algorithm Min 25th 50th 75th Max
MARS 0.00948 9.98 20.4 32.9 863.0
SVR 0.00233 3.15 7.21 11.3 28.6
MLP 0.0000239 0 .533 1 .25 2.84 39.3

Delaunay 3 .72 × 10−12 1.2 3.5 7.67 30.7
ShepMod 0.0 0.255 0.908 3 .43 34.5
LSHEP 0.00254 2.93 7.16 13.1 29 .0
Voronoi 0.0 1.29 3.52 6.87 30.1

BoxSpline 0.006 4.3 8.91 15.1 45.3

Table 5 This numerical data accompanies the visual provided in Figure 12. The columns of
absolute error percentiles correspond to the minimum, first quartile, median, third quartile,
and maximum absolute errors respectively. The minimum of each column is boldface, while
the second lowest value is italicized. All values are rounded to three significant digits.

Algorithm % Best Fit/Prep. Time (s) App. Time (s) Total App. Time (s)
MARS 0.0 37.9 0.00253 1.48
SVR 0.1 0.859 0 .000181 0 .106
MLP 32 .0 348.0 0.00111 0.653

Delaunay 0.0 2.47 1.22 720.0
ShepMod 66.4 1 .13 0.000182 0.107
LSHEP 0.0 2.39 0.000144 0.0845
Voronoi 1.6 2.77 0.0274 16.1

BoxSpline 0.0 1.26 0.000643 0.377

Table 6 The left above shows how often each algorithm had the lowest absolute error
approximating Parkinson’s data in Table 5. On the right columns are median fit time of 5288
points, median time for one approximation, and median time approximating 587 points.
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Algorithm Min 25th 50th 75th Max
MARS 6 .45 × 10−15 2.70× 10−14 1.66 1.96 53 .3
SVR 0.0000915 0.0833 0.263 1 .13 109.0
MLP 0.0000689 0.0337 0.0795 0.264 5.31

Delaunay 0.0 0.187 0.919 2.72 56.3
ShepMod 0.0 0.0957 0.685 2.9 73.2
LSHEP 0.0 0 .0153 0 .106 1.17 113.0
Voronoi 0.0 0.43 1.28 2.94 83.8

BoxSpline 0.0 0.342 1.59 5.53 119.0

Table 7 This numerical data accompanies the visual provided in Figure 14. The columns of
absolute error percentiles correspond to the minimum, first quartile, median, third quartile,
and maximum absolute errors respectively. The minimum value of each column is boldface,
while the second lowest is italicized. All values are rounded to three significant digits.

Algorithm % Best Fit/Prep. Time (s) App. Time (s) Total App. Time (s)
MARS 10.7 0 .151 0.000117 0.0304
SVR 0.0 0.133 0.0000947 0.0246
MLP 60.9 169.0 0.00137 0.356

Delaunay 0.1 0.664 0.886 230.0
ShepMod 3.5 0.265 0.000128 0.0333
LSHEP 28 .4 0.874 0 .0000975 0 .0254
Voronoi 0.2 0.675 0.0270 7.01

BoxSpline 4.1 0.330 0.000406 0.106

Table 8 Left table shows how often each algorithm had the lowest absolute error approxi-
mating Sydney rainfall data in Table 7. On the right columns are median fit p time of 2349
points, median time for one approximation, and median time approximating 260 points.

Algorithm Min 25th 50th 75th Max
MARS 5.36 3610.0 4580.0 5450.0 13400.0
SVR 0.00706 8.14 13 .0 41.6 7690.0
MLP 0.00151 1.6 3.86 8.34 604.0

Delaunay 0.0 2 .69 13.8 35 .0 4840 .0
ShepMod 0.0 4.21 17.3 51.6 6510.0
LSHEP 1.27 199.0 260.0 343.0 6530.0
Voronoi 2 .89 × 10−10 14.7 32.8 52.9 4860.0

BoxSpline 0.0 12.4 35.0 90.1 7690.0

Table 9 This numerical data accompanies the visual provided in Figure 16. The columns of
absolute error percentiles correspond to the minimum, first quartile, median, third quartile,
and maximum absolute errors respectively. The minimum value of each column is boldface,
while the second lowest is italicized. All values are rounded to three significant digits.

Algorithm % Best Fit/Prep. Time (s) App. Time (s) Total App. Time (s)
MARS 0.0 22.0 0.00148 0.820
SVR 0.0 1.01 0 .000210 0 .117
MLP 79.5 290.0 0.000714 0.397

Delaunay 20 .5 3.12 3.71 2070.0
ShepMod 0.1 1 .45 0.000220 0.122
LSHEP 0.0 3.47 0.000176 0.0981
Voronoi 0.0 3.32 0.0950 52.8

BoxSpline 0.0 1.66 0.000956 0.532

Table 10 The left above shows how often each algorithm had the lowest absolute error
approximating credit card transaction data in Table 9. On the right columns are median fit
time of 5006 points, median time for one approximation, and median time approximating
556 points.
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Algorithm Min 25th 50th 75th Max
Delaunay 0.0287 0.0914 0.158 0 .308 0 .897
ShepMod 0.0307 0 .0983 0 .164 0.335 1.0
Voronoi 0 .0303 0.1 0.165 0.274 0.762

BoxSpline 0.0679 0.429 0.571 0.752 1.0

Table 11 This numerical data accompanies the visual provided in Figure 18. The columns
of absolute error percentiles correspond to the minimum, first quartile, median, third quar-
tile, and maximum KS statistics respectively between truth and guess for models predicting
the distribution of I/O throughput that will be observed at previously unseen system config-
urations. The minimum value of each column is boldface, while the second lowest is italicized.
All values are rounded to three significant digits.

Algorithm % Best Fit/Prep. Time (s) App. Time (s) Total App. Time (s)
Delaunay 62.0 0.344 0.00984 2.71
ShepMod 0.0 0.0884 0.000145 0.0436
Voronoi 38 .0 0.360 0.00253 0.762

BoxSpline 0.0 0 .0972 0 .000210 0 .0633

Table 12 The left above shows how often each algorithm had the lowest KS statistic on
the I/O throughput distribution data in Table 11. On the right columns are median fit time
of 2715 points, median time for one approximation, and median time approximating 301
points.
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