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What is “Variability”?
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Managing this performance variability can be very important in 
applications where we want to meet some set requirements.
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VarSys: Modeling 
and Managing 
Variability
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High Performance Computing 
HPC systems consume a lot of 

energy and time, both are 
functions of how the system was 
built and configured. Models can 

be used to optimize a 
configuration.


Cloud Computing 
Small savings in compute time and 
performance magnify greatly when 
1000’s of machines are involved. 
Service Level Agreements (SLAs) 

can be tightened.

Computer Security 
A strong understanding of 

variability can improve defenses 
against malicious users by 

demonstrating new vulnerabilities, 
and helping prevent side channel 

attacks.
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configuration.


Cloud Computing 
Small savings in compute time and 
performance magnify greatly when 
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Service Level Agreements (SLAs) 

can be tightened.

Computer Security 
A strong understanding of 

variability can improve defenses 
against malicious users by 

demonstrating new vulnerabilities, 
and helping prevent side channel 

attacks.

Variability is important in many aspects of computation. 

Quantifying variability and constructing models of it may lead to 
improvements in all of these aspects of computation.
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Given
underlying function  f : ℝd ⇾ ℝ  
data matrix Xd × n with column vectors x(i) ∈ℝd 
function values  f (x(i)) for all x(i)  
vector f (X) has elements  f (x(i))

Approximation: The Problem Description
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Regression Techniques

Multivariate Adaptive 
Regression Splines
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IOzone — A System Benchmark

System Specs: 

Two Intel Xeon E5-2637 
CPUs with total 16 CPU 
cores and 16GB DRAM 
per node, at 12 nodes.


Ext4 filesystem above 
an Intel SSDSC2BA20 
SSD drive.


Each of ~20K unique 
system configurations 
were run 150 times.
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Mean Prediction Results
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Variance Prediction Results
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Chapter Takeaways

Multivariate models of HPC system performance can predict 
I/O throughput mean and variance.


The Delaunay method produces considerably better results 
for mean and variance prediction.


Throughput variance is harder to predict than mean throughput.
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Box Splines

Proposed by C. de Boor as an extension of B-Splines into 
multiple dimensions (without using tensor products).


 
Can be shifted and scaled 
without losing smoothness.


 
Computationally expensive.
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Construction of a Mesh

Max Boxes


𝓞(n2d log n)
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Testing and Evaluation: Data

18



COMPUTER SCIENCE

Testing and Evaluation: Data

High Performance Computing File I/O 
     n = 532, d = 4 
   predicting file I/O throughput

18

� �×��� �×��� �×��� �×��� �×���
�
��
���
���
���
���



COMPUTER SCIENCE

Testing and Evaluation: Data

High Performance Computing File I/O 
     n = 532, d = 4 
   predicting file I/O throughput

18

� �×��� �×��� �×��� �×��� �×���
�
��
���
���
���
���

��� ��� ��� ���
�
��
��
��
��

 
 

Forest Fire 
     n = 517, d = 12 
   predicting area burned



COMPUTER SCIENCE

Testing and Evaluation: Data
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     n = 517, d = 12 
   predicting area burned

Parkinson’s Clinical Evaluation 
     n = 468, d = 16 
   predicting total clinical “UPDRS” score
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Average Relative Testing Error (y-axis) 
 versus Relative Error Tolerance (x-axis)
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Chapter Takeaways

The “Max” method appears to produce better results than the 
“Iterative” method. The Voronoi Cell method is best for I/O, but 
worst for all other tests.


The bootstrapping combined with the least squares 
computation incurs a lot of computational expense. This 
methodology cannot be scaled to more than 100’s of points.
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Interpolating Distributions

A Cumulative Distribution Function (CDF)  
must maintain the properties:


 
 
           is absolutely 
continuous and 
nondecreasing. 

A convex combination 
of CDFs results in a  
valid CDF. Consider this 
example, solid line is the 
weighted sum:

   {.3 Red, .4 Green, .3 Blue}
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Measuring Error in a Prediction
Kolmogorov Smirnov (KS) 
statistic, max-norm difference. 
 
Null hypothesis (of distributions 
being same) is rejected at 
confidence level p according to 

 
Dotted lines – 
    source CDFs


Dashed line – 
    predicted CDF (Delaunay)


Solid line – 
    true CDF


Red arrow – 
    KS statistic between 
    predicted and true (.2)
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Results Applied to IOzone

 
x-axis – KS Statistic 
y-axis – Number of predictions


Red lines: 
   KS significance levels at 
   {.1 .05, .01, .001}


Consider all values to the 
right of a red line an “incorrect” 
prediction at that significance.
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Increasing Training Data

x-axis – Percentage training data 
y-axis – Percentage N.H. rejections 
Below: Aggregate 
Right: Breakdown by Test
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Improving Performance with Tuning

Consensus optimal weighting of (.001, 2, 1.7, 1.5), for frequency, file 
size, record size, and number of threads. Frequency is unimportant.
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Chapter Takeaways

Without any modification, many interpolants can be used to 
predict distributions! Particularly, those that make predictions 
with convex combinations of known function values.


Distribution prediction performs well, impressively so with 
tuning (however the tuning is less provably useful).


20K system configurations appears to approach the limit of 
distribution prediction accuracy. If we had a better way to 
approximate distributions, we might reduce error further.
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The Theory
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The Theory

The absolute error of a 
linear interpolant is tightly 
upper bounded by

29

the max change in 
slope of the function

times the distance to 
the nearest known 
point squared

plus the square root of 
the dimension times the 
max change in slope

times the longest edge 
length between points 
defining the linear 
interpolant squared

divided by how close 
the interpolated points 
are to being planar.
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The Importance

The approximation error of a linear (simplicial) interpolant tends 
quadratically towards zero when approaching observed data only 
when the diameter of the simplex is also reduced proportionally.


In practice, only linear convergence to the true function can be 
achieved (because the evaluation points don’t move).


Approximation error is largely determined by data spacing!


This theory only directly applies to Delaunay, but may give insight 
into the approximation behavior of other techniques.

30



COMPUTER SCIENCE

Piecewise Linear Approximations

31
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Approximating     ______________

In 2 dimensions, we get expected results. 
Delaunay is better at interpolation, MLP better at regression.

32
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Approximating     ______________

In 20 dimensions, the intuitive trend disappears! 
Delaunay and MLP look the same.
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Explaining the Convergence

34
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Connecting Back to Theory
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Connecting Back to Theory
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Data Sets for Empirical Evaluation

Forest Fire ( n = 504, d = 12 ) 
  given meteorological information about a park, predict 
  the amount of land that would be burned in a forest fire.


Parkinson’s Telemonitoring ( n = 5875, d = 19 ) 
  given features of audio recorded in the home of someone 
  with Parkinson’s, predict their next clinical evaluation score.


Australian Daily Rainfall Volume ( n = 2609, d = 23 ) 
  given meteorological data around Sydney, Australia, predict 
  the amount of rainfall that will occur on the next day.


Credit Card Transaction Amount ( n = 5562, d = 28 ) 
  given anonymized electronic transaction features (output of PCA) 
  predict the amount of money that the transaction will process.


High Performance Computing I/O ( n = 3016, d = 4 ) 
  given system configuration information, predict the distribution 
  of I/O throughput that will be seen at a new configuration.
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Empirical Results for Each Data Set
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Empirical Results for Each Data Set
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Empirical Results for Each Data Set
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IOzone Distribution Models
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Chapter Takeaways

Interpolants have provable convergence properties.


Interpolants produce competitive approximations in medium 
dimension, while requiring very little “fit” time.


Some interpolants easily generalize to predicting functions.
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Empirical Distribution Approximations
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Connection to Variability
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Monotone Piecewise Quintic Splines

Theory existed to create splines that are composed of quintics, but no 
mathematical software had been produced!


G. Ulrich and L. Watson. Positivity conditions for quartic polynomials. 
SIAM Journal on Scientific Computing, 15(3):528–544, 1994. doi: 
10.1137/0915035. URL https://doi. org/10.1137/0915035.


Walter Hess and Jochen W Schmidt. Positive quartic, monotone quintic 
c2-spline interpolation in one and two dimensions. Journal of 
Computational and Applied Mathematics, 55(1): 51–67, 1994. doi: 
10.1016/0377-0427(94)90184-8. 

Dougherty, Randall L., Alan S. Edelman, and James M. Hyman. 
Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic 
Hermite interpolation. Mathematics of Computation 52.186 (1989): 
471-494.
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Proposed Software Package, MQSI
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The Big Picture

1. The Importance and Applications of Variability


2. Algorithms for Constructing Approximations


3. Naive Approximations of Variability


4. Box-Splines: Uses, Constructions, and Applications


5. Stronger Approximations of Variability


6. An Error Bound for Piecewise Linear Interpolation


7. A Package for Monotone Quintic Spline Interpolation
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Overview
1. The Importance and Applications of Variability 
        define variability, why is it important?


2. Algorithms for Constructing Approximations 
        approximation, regression and interpolation techniques


3. Naive Approximations of Variability 
        mean, variance, and standard deviation prediction with IOzone


4. Box-Splines: Uses, Constructions, and Applications 
        spline overview, box splines, meshes, fitting, and data sets


5. Stronger Approximations of Variability 
        predicting distributions, measuring error, and tuning


6. An Error Bound for Piecewise Linear Interpolation 
        theoretical bound, synthetic demo, and empirical results


7. A Package for Monotone Quintic Spline Interpolation 
        MQSI algorithms, example pictures, performance study
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